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Abstract

This dissertation addresses different aspects of flow instability in non-isothermal miscible dis-

placements through media with static and dynamic permeability distributions. The research

is conducted in three steps. In the first step non-isothermal flows in homogeneous media are

studied by numerical simulation of the displacement process in a Hele-Shaw cell. The results

show that the stability of the process highly depends on the strength of interactions between

the two fronts determined by the thermal lag coefficient. The relative rate of diffusion of

heat in the medium can magnify the effect of lag between the two fronts or compensate for

it depending on the considered scenario.

Miscible displacements with adverse mobility ratios are analyzed in the second part of

this study for layered heterogeneous media. The effects of the flow parameters and the het-

erogeneity characteristics of the domain are examined. Qualitative and quantitative analysis

of the results lead to characterization and unification of four distinct regimes that govern the

flow displacement for different parameters. The unification allows to distinguish between the

flows in which the instability is dominated by heterogeneity and those with viscous fingering

dominant instability.

Finally in the last two chapters of this dissertation, the changes in the porosity and

permeability in melting porous media are modeled. The effects of the melting parameters

on the amount of melted material and the rate of melting are analyzed. In addition, the

heat transfer mechanisms in presence of the bypassing flow around frozen blocks of different

geometries are analyzed and their melting rates are unified based on the shape factor and

initial porosity of the block. In study of the flow displacements prone to instability, the

dominant mechanisms that affect the growth and patterns of instability for different melting

parameter values are recognized and their contribution to enhancement or attenuation of

i



www.manaraa.com

fingers are determined analytically. The study shows that instabilities in general enhance

melting but the enhancement is limited for displacements with small melting potentials.
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Chapter 1

Introduction

In this thesis, miscible displacements in porous media are studied in terms of the devel-

opment of hydrodynamic instabilities on the diffusing fronts. In this context the viscosity

ratio between the injected fluid and the displaced one is set to unfavorable values to induce

viscous fingering. Consideration of heat transfer mechanisms and non-uniform distribution

of permeability in the medium extend the applicability of the study to non-isothermal dis-

placements in heterogeneous media. The coupling between the viscosity driven instability

due to thermal or solutal adverse mobility ratios, and the heterogeneity guided channeling

is investigated thoroughly. Furthermore a dynamic model of heterogeneity whose formation

and pattern depend on the other instability mechanisms are introduced and modeled in the

final parts of the study.

The problem of miscible viscous fingering (VF) is encountered in various natural phenom-

ena and industrial and environmental applications including but not limited to secondary

and tertiary oil recovery, filtration, polymer processing, pollution spreading in soils, fixed bed

regeneration and engineering separation techniques [1, 2]. Viscous fingering, that classically

happens when a fluid of a smaller viscosity displaces another miscible more viscous fluid, has

been identified as one of the most important phenomena in miscible displacement processes

for decades [3, 4]. The inherent instability leads to a deformation of the interface into finger

like patterns called viscous fingers [5, 6, 7]. Until 1990s, the simplest form of viscous fingering

in miscible displacements was deemed to be too difficult for numerical simulation. Enhance-
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ment of the computing capability facilitated the investigation of multivarious forms of the

problem. Since then numerous works have been devoted to studying this type of instability

in miscible displacements through experimental, analytical, and numerical studies looking at

the characteristics and mechanisms of instability. Different aspects of the problem have been

explored in these works such as the geometry of the model (e.g. rectilinear [7, 8, 9], radial,

or five-spot geometry) in two and three dimensions [10, 11], the fluid properties (Newtonian,

non-Newtonian [12], visco-elastic), the dispersion model (anisotropic and velocity dependent

dispersion [11, 13]), for reactive [14, 15, 16, 17] and nonreactive displacements, in systems

with constant and variable injection rates [18], and considering the additional inertial effects

in the momentum equation[19, 20]. Such a vast amount of work on this subject reflects the

complexity and importance of the problem.

In the current work the viscous fingering in non-isothermal displacement processes is

investigated. So it is assumed that in addition to the injected fluid’s concentration, its tem-

perature can also contribute to the adverse mobility ratio and thus affect the instability. Such

instability is often referred to as thermo-viscous fingering (TVF). Thermo-viscous fingering

is mainly observed in thermal oil recovery processes but is also encountered in geothermal

reservoir recharge [21], injection molding, and some polymer processing processes [22]. Due

to the instantaneous thermal equilibrium between the fluids and the porous matrix the heat,

that is shared with the porous medium, is convected in a slower rate than the mass and thus

two fronts are formed in such systems. These fronts may have different viscosity gradients

and diffusion rates and thus show different tendencies towards or against the development

of instabilities controlling the growth rate and the preferred scale of fingers. The problem

can be generalized to miscible displacements with two components of the fluid affecting the

viscosity being diffused and convected at different rates (known as double diffusive-double

convective displacements) [23, 24]. The dynamics of the two fronts are coupled [25] and
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may show stability criteria that are not conventionally expected [23]. The early studies on

the instability of non-isothermal displacement processes did not start until 2000 [4]. In 2007

Islam and Azaiez developed a model for thermo-viscous fingering in rectilinear geometry and

studied the linear stability and nonlinear behavior of the process [26, 22, 27]. In Chapter

3 an extension to the previous studies is presented analyzing the effect of different stabil-

ity properties of the thermal and solutal fronts through numerical solution of the nonlinear

equations. A larger variety of thermal and solutal log mobility ratios are examined for differ-

ent relative diffusion rates and the results are analysed based on their sweep efficiency and

breakthrough times.

In addition to viscous forces the effect of the permeability distribution in the porous

medium on the stability of the displacement is also studied in this work. In real porous media

the permeability distributes in a random manner and the heterogeneity affects the validity of

the results obtained for homogeneous media. The interactions between viscous instabilities

(including TVF) and heterogeneity driven instability (also called channeling) have been an

interesting subject for researchers for many years due to the extensive application of these

studies in industrial displacement processes. But the vast study on this problem is not only

due to its applicability and rather stems from the complexity of the mechanisms affecting

the dynamics of the flow and the front patterns. Different flow regimes have been observed

for different parameter values and attempts to derive a single descriptive parameter that

can categorize different scenarios in the dominant flow regimes have only been partially

successful using empirical correlations. In Chapter 4 a systematic examination of the flow

instability in viscously unstable displacements in layered porous media is presented that leads

to unification of the trends with the use of a new dimensionless group. The application of

the unifying group in up-scaling and design of displacement processes in oil and gas recovery

is presented in Appendix A.
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Although in most of the named applications the porous medium is static, there are

natural phenomena and some industrial applications that deal with a form of heterogeneity

that evolves through the progress of the displacement process. This form of heterogeneity can

be called dynamic heterogeneity. There are different mechanisms that can lead to dynamic

heterogeneity like precipitation/dissolution of the minerals or melting/freezing inside the

pores of the medium. Examples of natural and industrial phenomena that experience such

an evolving heterogeneity include melting of sea ice, melting of the ice in artificially or

naturally frozen ground, melting of the rocks due to flow of magma, precipitation of minerals

in geothermal processes, and melting of bitumen at the advancing edge of the steam chamber

in processes such as SAGD, VAPEX, SA-SAGD and so on. The system that is modeled in

Chapters 5 and 6 consists of a porous medium being partially saturated with a frozen material

that is distributed homogeneously in the medium. The rest of the pores are saturated with

the melt or a fluid fully miscible with the melted form of the frozen material. Injection

of a hot fluid miscible with the inhabitant one starts the displacement process which is

prone to viscous instability on both thermal and solutal fronts. The heat of the fluid melts

down the frozen material in the regions flooded by hot fluid and the melting introduces new

mechanisms to the flow dynamics. First, spending the heat on melting defines a new profile

for the thermal front that is mostly controlled by the melting parameters rather than the

convection-diffusion equations. Secondly, the melt that joins the flow dilutes the fluid and

reduces the concentration at the melting region resulting in formation of two concentration

fronts: one at the melting region and the second ahead of the melting front in the frozen

region where the injected fluid is being convected and diffused into the inhabitant fluid.

The third new mechanism is the increase of permeability of the medium in the regions

experiencing melting (hence the dynamic heterogeneity) that results in increase of the flow

through those regions and further enhancement of melting. The dynamic heterogeneity
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that is produced by viscous fingers and yet like in static heterogeneous media guides the

instabilities and contributes to the flow instability is a new concept that has been explored

in this work. The defined problem considering the flow of hot fluid through the frozen region

and the development of instabilities in this system have not been studied in any other works

before and therefore Chapter 5 deals with the fundamental aspects of the problem in the

absence of the destabilizing mechanisms. At the end of the chapter the frozen region is

introduced to the medium as frozen blocks confined within the simulated domain that allow

the bypass of the frozen region. This new configuration is similar to the studies that assume

the flow to happen around an unpermeable frozen block. In Chapter 6 the instability of the

flow in melting media is investigated.

Before closing this chapter, it needs to be mentioned that this is a paper based dissertation

consisting of published or under review journal manuscripts. So, parts of the introduction,

the reviewed articles, and the mathematical models are repeated throughout the chapters.

In particular, the sections of Chapter 6 describing the model and the numerical methods

(Sections 6.2 and 6.3) can be skipped due to close similarity to the corresponding sections

in Chapter 5. At the first page of each chapter the corresponding article is referred to in the

footnotes. Appendix A is a conference paper presented in SPE conference on the application

of the ideas in Chapter 4 in oil industry. Appendix B describes the scaling that unifies

melting processes with different heat transfer coefficients, amended to Chapter 6.
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Chapter 2

Review of the Background

The review of the studies related to the research work presented in this dissertation

consists of three main sections. The first section corresponds to the studies on viscous

fingering (VF) and thermo-viscous fingering (TVF). The second section elaborates on the

studies on the flow instabilities in heterogeneous porous media. The final section of this

survey is dedicated to the studies dealing with the melting and dynamic porosity in porous

media.

2.1 Thermo-Viscous Fingering in Homogeneous Porous Media

Flow displacements in porous media have been the subject of numerous studies due to their

importance in many processes such as enhanced oil recovery, solute transport in aquifers,

filtration, carbon dioxide sequestration, determination of pore size distribution of catalysts

for reactors, and packed bed regeneration. In practice, the viscous fingering instability

which occurs when a high-viscosity fluid is displaced by a low-viscosity one, results in early

breakthrough and reduction of efficiency of the displacement process. This instability appears

in the form of finger-shaped penetrations of the displacing fluid into the displaced one,

commonly referred to as fingering or Saffman-Taylor instability [5, 6, 28]. Although this

form of instability is named after Taylor and Saffman, the first study on viscous fingering

was carried by Hill [5]. The paper by Hill in 1952, regarded as the pioneering work on viscous

fingering, included linear stability analysis and experimental work on the coupling of density

6



www.manaraa.com

fingering and viscous fingering. It was only in the late 1950’s that Saffman and Taylor [6, 29]

and Chuoke et al. [30] performed linear stability analyses on one-dimensional displacements.

Saffman and Taylor also carried out some immiscible displacement tests in a rectangular

Hele-Shaw cell and published their now-classical papers. Since then, viscous fingering has

been extensively investigated through linear stability analysis, nonlinear simulations, and

experimental measurements.

Due to the large amount of work on viscous fingering, a brief overview of the studies in

this field is brought in this introductory section and more detailed review of the literature

is devoted to the main focus of this section, namely thermo viscous fingering (TVF). Also

because the literature on viscous fingering is very diverse with respect to the geometry and

assumptions applied to the models and experiments, this survey will not cover some of

the works concerned with other aspects of instabilities observed in displacement processes.

Research studies dealing with non-Newtonian fluids, or other mechanisms of instability such

as gravity fingering or reaction driven systems will not be covered in the present review. For

extensive reviews on fingering instability, one may consult the seminal work of Homsy (1987)

[1] which has covered most of the early literature on isothermal miscible and immiscible

viscous fingering as well as that of McCloud and Maher (1995) [2] who has focused on

experimental studies for isothermal flows.

2.1.1 Instabilities in Isothermal Displacements

The early studies dealing with viscous fingering considered immiscible displacements in which

surface tension results in a sharp interface between the injected and the displaced fluids. The

first nonlinear simulation involving miscible displacements was carried out by Peaceman and

Rachford in 1962 [31] who used the finite difference method for the computation of insta-

bilities in a heterogeneous porous medium with rectilinear geometry. In 1969 Wooding [32]
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carried out experimental studies by visualizing fingering patterns in a Hele-Shaw cell through

X-ray absorption technique. By comparing the finger patterns with the results of similar

experiments in porous media reported by Slobod and Thomas (1963) [33], Wooding justified

the use of the Hele-Shaw geometry for analysing viscous fingering instabilities. According

to these findings, the Hele-Shaw cell geometry was able to mimic the fingering phenomenon

in porous media. This simplification of the geometry made the experiments easier to carry

out and facilitated focusing of the experiments on the effect of isolated parameters. More

advancement in numerical simulation was achieved by using spectral methods in modeling

the instability. Tan and Homsy [8] proposed a spectral method based on the Fourier trans-

form to model viscous fingering of a miscible flow in a rectilinear Hele-Shaw cell. These

simulations were able to capture the mechanisms of instability such as shielding, spreading,

and tip splitting, observed by Wooding and Morel-Seytoux [34] through miscible displace-

ment experiments in porous media. Later in 1992 Zimmerman and Homsy using the spectral

methods, showed the consistency of the results of 3D simulation with those of 2D simula-

tions [35]. These findings justified simulation of the 3D phenomenon of viscous fingering in

porous media using a 2D displacement model of the flow in a Hele-Shaw cell.

Although in this research we focus on nonlinear simulations of TVF, a brief review on

stability analyses of miscible displacement processes will be also presented to illuminate the

characteristics of these instabilities. Linear stability analysis allows to determine the growth

rate of each disturbance wavelength through linearization of the governing equations. Tan

and Homsy [7, 36] were the first to present a thorough and detailed study of the linear

stability of viscous fingering in isothermal miscible displacements. These authors adopted

the quasi-steady-state approximation (QSSA) where the growth rate of the perturbations

is assumed to be asymptotically larger than the rate of changes in the base state. This

assumption allowed them to determine the most dangerous wavelength at each time step,
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and was justified by the authors through initial value calculations. However, QSSA method

has recently been questioned by Ben et al. [37] for sharp base state profiles at the onset of

the flow. Also recently the stability studies of different displacement scenarios by Kim and

Choi [38, 39] have shown that the validity of QSSA is questionable for small values of t0 and

that the results from QSSA method are identical to those of the eigenanalysis. Nevertheless

there have been many subsequent stability analyses that have adopted QSSA. These include

but are not limited to studying the characteristics of instabilities in displacements with

non-monotonic viscosity profiles (Manickam and Homsy [40]), and studying the effects of

non-Newtonian behavior in the involved fluids (Azaiez and Singh [12]). In general the linear

stability analyses on miscible displacements have lead to the following conclusions:

- If the mobility ratio is unfavorable, perturbations with long wave lengths grow faster;

- Shallow gradient of viscosity mitigates the viscous instability;

- Disturbances with a wave number higher than a cut-off value vanish due to transverse

dispersion.

As mentioned earlier, there has been a growing interest in the viscous fingering instability

when it is coupled with heat transfer. This interest which has been mainly motivated by its

application in thermal recovery in oil industry, has resulted in a great wealth of information.

In the following section a brief review of these investigations is presented.

2.1.2 Instabilities in Non-Isothermal Displacements

In non-isothermal displacement processes the viscosity of the fluids may vary with the con-

centration of the solvent as well as the temperature of the fluids. This results in a nonlinear

instability that has been referred to as thermo-viscous fingering [25, 41]. Due to differences

in the rates of transport of heat and mass, thermo-viscous fingering involves two fronts, the

9



www.manaraa.com

first being the concentration front and the second the thermal front [22, 27]. It has been

observed that fingering on each of these fronts can contribute to the instability of the flow

and the rate of growth of the fingers depends on both effects [25].

As mentioned before, thermal displacements are encountered in many oil recovery ap-

plications such as hot water flooding, steam flooding, cyclic steam stimulation (CSS), and

steam assisted gravity drainage (SAGD), most of which are based on the injection of steam.

Therefore existing experimental studies on thermo- viscous fingering have mostly focused on

steam flooding due to its wide applications in oil recovery. In steam-based recovery processes,

the steam -fluid interface shows different instability mechanisms than those observed in hot

water flooding [42] or solvent flooding. In steam based processes, heat loss to the surround-

ings is enhanced in the steam fingers due to extended contact area, and phase change occurs

inside the fingers. As a result the steam becomes liquid and its viscosity increases drastically

resulting in the attenuation or disappearance of the finger. Hence, although steam flooding

experiments fall under non-isothermal displacements, they will not be included in the present

literature review due to the irrelevance of the mechanisms of instabilities in such processes

to the problem of interest.

In what follows, studies dealing with miscible and immiscible non-isothermal displace-

ments are discussed. The review will first examine briefly the case of pure thermal displace-

ments where only one single fluid is involved and then extends to displacements involving

two fluids. Though important, the studies on thermal recovery processes using commercial

simulators, carried out for a large number of projects dealing with heavy oil and bitumen

recovery [43, 44, 45] are not included in the present literature review as they have not focused

on the flow instability per se, and are not directly relevant to the proposed research.

Special cases of thermo-viscous fingering in which the injected and the displaced fluids

have similar compositions but different temperatures can be observed in phenomena such as
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flow of magma through dikes and fissures in eruption of fissures [46] and the flow of injected

melt in injection molding processes. Few studies dealing with TVF have focused exclusively

on pure thermal displacements. One example would be the experimental measurements

conducted by Kuang and Maxworthy [47] in which a fluid at a high temperature was injected

in a cylindrical capillary tube to displace the same fluid at a lower temperature. The study

allowed to identify three front stability regimes based on the injection flow rate. For lower

injection rates the flow was diffusion dominated whereas for high injection rates the flow

was viscously dominated. These two regimes were separated by a medium injection-rates

regime that allowed for a transition between diffusion and viscous regimes. Although in these

experiments the stability was studied as a function of the flow rate, the analytical studies and

numerical simulations have shown that changing the injection rate does not affect the intrinsic

stability conditions of the flow and affects only the growth rate of fingers [22, 23]. Holloway

and deBruyn [48, 49] also examined the 3D instability of a displacement involving hot glycerin

injected to displace cold glycerin in a radial Hele- Shaw cell. Their studies involved both

experiments and numerical simulations using FLUENTTM. The authors found that the

fingering instability required a minimum initial viscosity ratio and a minimum injection rate

to develop in radial geometry. The wavelength of these instabilities had a slight dependence

on the width of the cell but none on the injection rate or the viscosity contrast.

The vast majority of TVF studies involved displacements in which both mass and heat

were transported. These works are discussed next in chronological order. The first numerical

study to model non-isothermal miscible displacements with consideration of double diffusive

convection in the system was the finite element based work of Saghir et al. [4]. The vertical

displacement of glycerin with water at constant flow rate and evolution of thermo-viscous

fingers were analyzed through numerical simulations and experiments. Despite the adverse

mobility ratio 1485, the model actually failed to reproduce the expected complex instabilities
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in the system. Inaccuracy of the numerical scheme and inclusion of many different factors

influencing the instabilities such as, thermal effects, solutal effects, and gravity may have

contributed to the failure of the simulations to reveal the finger structures.

In another study, Sheorey et al. [50] conducted numerical experiments on simulation of

immiscible displacements in isothermal and non-isothermal conditions using a finite differ-

ence scheme and operator-splitting algorithm. Although their numerical simulations encoun-

tered oscillations in laterally averaged saturation profiles due to a number of inaccuracies in

the calculation process, in a subsequent experimental study still involving immiscible fluids

Sheorey et al. [51] were able to obtain conclusive and interesting results in regards to non-

isothermal displacements. The study revealed the stabilizing effects of heat transfer in the

displacing processes that allowed for high recovery during non-isothermal injections of water

in a 5 spot pattern geometry.

In 2004, the first linear stability analysis for non-isothermal miscible displacements was

conducted by Pritchard [25] for a displacement in a homogeneous porous medium with

radial geometry. The author considered two moving fronts and found that viscous fingering

instability on any of the two fronts can induce perturbations on the other one and affect the

dynamics of its instability. The stability analysis in this work followed the approach of Ben et

al. [37] and was based on an expansion of perturbations in terms of eigenfunctions. Pritchard

pointed out that the fluid front controlled the instability i.e. growth rate of fingers and their

wavelengths when both solutal and thermal log mobility ratios were positive. The reason that

the solutal front lead the instability was attributed to the higher Péclet number for solute

diffusion compared to thermal diffusion. For a flow with small lag between the fronts and

high thermal mobility ratio, the thermal front had more influence on fingers’ characteristics.

In 2009 Pritchard [52] performed another study on stability of double diffusive miscible

displacements in a rectilinear Hele-Shaw cell still adopting the method by Ben et al. [37]
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based on a spectral approach to obtain asymptotic response to long wave perturbations.

In a Hele-Shaw cell the flow does not experience heat exchange with the medium like what

happens in porous media and both of the two fronts travel at the same advancement rate. For

such a case, the only parameter that makes a double diffusive displacement different from a

simple isothermal displacement is the higher diffusion rate of heat compared to concentration.

Pritchard determined the growth rate and boundaries of instability at different times scales

and different diffusion ratios. The main conclusion of this work was that the stability of

double-diffusive miscible displacements cannot be simply predicted using viscosity gradient

analysis and not even using the stability analysis methods based on early time behavior of

the system. The author also commented on the the stability properties of the defined system

to be distinct from those of non-monotonic single species displacements.

The first successful nonlinear simulation of thermo-viscous fingering through which the

known mechanisms of fingering instabilities were observed and analysed was conducted by

Islam et al. [41]. Non-isothermal miscible displacements were modeled in a two dimensional

homogeneous rectilinear porous medium and in a Hele-Shaw geometry where the fluids and

solids were assumed to be in thermal equilibrium. The work adopted a spectral method

through semi-implicit predictor corrector time stepping scheme along with operator splitting

technique. The study accounted for heat loss to the porous medium and was able to capture

the gap between the two fronts. For higher diffusion rates of heat and low porosity values

(i.e. more heat transferred to the porous medium) the authors observed that the instability

was dominated by the solutal front. This result was in agreement with Pritchard’s linear

stability analysis. Following their previous work, Islam and Azaiez in 2010 [27] performed

more detailed analysis of the results of nonlinear simulations. The interface area between

the displacing and the displaced fluid was used to quantify the complexity of the fingers as a

measure of the scale of instability. In their analyses the isothermal displacement showed more
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instability compared to the same solutal front being accompanied by an unstable thermal

front with high diffusion rate. However the sweep efficiency for all isothermal and non-

isothermal cases showed similar results which was probably due to the definition of efficiency

with respect to a moving reference frame adopted in their study. The authors also examined

the instability in quarter five-spot miscible displacements in 2011 [53]. The results they

found for enhanced instability of the front at high diffusion ratios when both log mobility

ratios were positive was in contrast with what was reported in the rectilinear geometry where

increases in thermal diffusion rate resulted in a decrease of instability with respect to the

reference isothermal case. Other conclusions of this work were in qualitative agreements

with their findings in the rectilinear geometry.

For linear stability analysis of the non-isothermal miscible displacement in homogeneous

porous media, Islam and Azaiez [22] used quasi-steady-state approximation (QSSA) and ini-

tial value calculation (IVC) approaches. The step -profile approximation method borrowed

from [7, 9] was used as an alternative for the numerical method in QSSA approach. In IVC

method the initial set of linearized equations were solved for the growth rate of individual

perturbations. It was found that IVC method could distinguish between instabilities caused

by velocity, temperature or composition perturbations and the instability criteria was set

based on the highest growth rate of any of these quantities. The short time stability anal-

ysis led to the conclusion that for large Lewis numbers, the flow experiences an instability

dominated by the concentration variations. Although for the QSSA method the dimensions

of the domain needed to be defined, the results revealed to be insensitive to the width of

the domain as long as it was wide enough to accommodate all the eigenfunctions. The sta-

bility curves plotted based on the QSSA method were qualitatively similar to those found

using the step profile approximation but showed the effect of thermal log mobility ratio less

significantly. The results of IVC method on the other hand were similar to QSSA method
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for unit diffusion ratio (i.e. when rate of diffusion of both parameters were assumed to be

the same) but showed different trends with increase of thermal log mobility ratio for higher

diffusion ratios (i.e. higher thermal diffusion rates). This implied that the assumption in

the QSSA approach based on a slow rate of diffusion compared to the growth rate of distur-

bances, is not valid for higher rates of diffusion. The IVC analysis revealed that for flows

with high thermal diffusion rate, the instability was attenuated with an increase of thermal

log mobility ratio. Islam and Azaiez [22] mentioned that the nonlinear simulations confirm

the results of IVC compared to the QSSA method which showed that IVC method was a

better approach to capture the characteristics of thermo-viscous fingering instabilities. The

work mainly focused on the effect of positive thermal log mobility ratios and did not spend

much effort to examine the effect of negative log mobility ratios for any of the fronts.

Stability analysis of double diffusive viscous fingering performed by Mishra et al. [23]

for miscible flooding in rectilinear Hele-Shaw geometry looked at the effects of log mobility

ratios of the two parameters changing viscosity with different diffusion rates. In terms of

the problem configuration and modeling equations, this analysis was similar to that of [52]

and can be regarded as a special case of the work of [27] with no gap between the two

fronts. However it took a different approach and resulted in a broader stability analysis and

more general conclusions. The slow and fast diffusing properties discussed in the mentioned

work, can represent concentration and temperature of the fluids and the analysis can be

applied to studying thermo-viscous fingering instabilities. The effect of porosity was not

included in the study and hence the lag between the two fronts was not actually considered.

The viscosity gradient analysis along with linear stability analysis (LSA), formed a stability

chart which showed the stability conditions for different values of log mobility ratios and

diffusion ratios. It was reported that aside from the zones with increasing viscosity in the

flow direction for which instability was trivially expected, the non-monotonically and even
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Figure 2.1: Stability criteria defined by Mishra et al. [23]; Rs and Rf are the log mobility
ratios corresponding to the effect of slow and fast diffusing properties respectively; The lines
Ln (n = 1 , 2 , 3) are defined through Rf = −δn/2Rs, δ is the diffusion ratio.

monotonically decreasing viscosity profile zones also may experience instability. These zones

are shown in Figure 2.1. In their work Mishra et al. showed that negative log mobility ratio

did not necessarily correspond to a stable displacement as conventionally expected. For

example in the zone with monotonic decrease of viscosity the instability was due to a pure

diffusive effect. The authors were able to confirm their findings by capturing the developed

instabilities in nonlinear simulations results.

In 2012 Azaiez and Sajjadi [24] relaxed the assumption adopted by Islam and Azaiez that

required the thermal and solutal fronts be initially coincident and travel at the same speed

and performed a stability analysis on general flow displacements involving two components

with different diffusion and convection rates. The stability analysis by Azaiez and Sajjadi

[24] using the step-profile approximation and QSSA method accompanied by numerical sim-

ulation of the nonlinear problem, could be regarded as a generalization of the previous works
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and they recovered the results by Islam and Azaiez [22] and Mishra et al. [23] as special

cases of the more general problem.

2.2 Coupling of Heterogeneity and Viscous Fingering

The vast majority of studies dealing with the viscous fingering instability, whether thermal

or isothermal, have focused on homogeneous porous media. However, in practical applica-

tions porous media are actually heterogeneous and the variations in the microstructure of

the medium change the permeability at different points. The displacement in a heteroge-

neous medium involves two mechanisms leading to instability: adverse mobility ratio leading

to viscous fingering, and variation of permeability leading to channeling or heterogeneous

fingering. In this section a review of the literature studying the coupling between viscous

instability and channeling in heterogeneous media is presented.

The first experimental study of miscible displacement in heterogeneous porous media

which later became the main reference of many subsequent numerical works was performed

by Blackwell et al. in 1959 [54]. In these experiments, the effects of the mobility ratio, and

heterogeneity of the medium on the recovery were investigated in stratified porous media. Oil

recovery was measured with respect to solvent injection before and after the breakthrough of

solvent. The authors noticed that the oil recovery before breakthrough depended primarily

on the mobility ratio. It was noted in the paper that this conclusion is not supported by

real field applications where the heterogeneity of the reservoir was observed to reduce the

recovery compared to homogeneous fields. By injecting a dyed solvent in the channel and

recording the solvent/oil interface pattern at different time steps, Blackwell et al. were able

to detect early formation of viscous fingers and shielding and coalescence of fingers at later

times.

Although such qualitative studies of the flow in heterogeneous media were useful in

17



www.manaraa.com

comprehending the process, because of its direct application in oil and gas industry, the

quantification of the heterogeneity with a single parameter has been an interesting subject

for researchers for many years. The Dykstra-Parson’s coefficient VDP (proposed in 1950) and

Lorenz coefficient LC (proposed in 1905 [55] and modified for use in petroleum engineering

in 1950 [56]) in stratified reservoirs are among the most famous parameters of this type, that

mainly consider the range of variations of permeability and the frequency of these variations

to describe the severity of the heterogeneity [57]. Though still efficiently used to describe

the heterogeneity of the medium, these single factors had shortcomings in representing the

whole medium and had to be used in combination with other factors. For example in 1988,

Jensen and Lake [58] examined the values of VDP and LC for different models of permeabil-

ity distribution and showed that these parameters that were defined for log-normal random

permeability distributions, were not sufficient to describe the severity of heterogeneity in

media better described by other distribution models. Due to such limitations different forms

and modified versions of these factors have been proposed over the years for different hetero-

geneous media such as non-normal random heterogeneity [58], layered composite reservoirs

[59], inclined stratified reservoirs [60], and so on.

The relative importance of heterogeneity (measured by one of these factors) to that of

viscous forces (traditionally measured through mobility ratio), has been mostly performed

qualitatively for constant mobility ratios. Therefore the quantitative measurements that were

later proposed by Koval [3], Todd and Longstaff [61], and Fayers [62] became very popular.

These 1D methods were based on Buckley-Leverett’s theory for miscible displacements, only

differing in the definition of the fractional flow functional. Koval’s method, in particular,

has been successful in calculating the efficiency of the displacement process at and after

the breakthrough of solvent at the effluent and has been extensively used for predicting the

performance of immiscible and miscible displacements in different unstable oil recovery pro-
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cesses. In Koval’s method the factor representing viscosity ratio was empirically calculated

by matching the experimental data of Blackwell et al. [54] and the heterogeneity factor

was defined based on the recovery obtained from injection of one pore volume of solvent in

different reservoir rock samples. Although such empirical methods provided reasonably good

predictions using simple graphical methods for industrial purposes, they did not investigate

the mechanisms of any of the viscous fingering or the channeling phenomena.

In an effort to better understand the mechanisms and other details of the flow in het-

erogeneous media, two dimensional simulations were developed. The first 2D simulation of

displacements in heterogeneous porous media dates back to 1962 when Peaceman and Rach-

ford performed numerical simulations of unidirectional displacements using finite difference

method [31]. They validated their simulation results with the previously discussed exper-

iments of Blackwell et al. [54]. Due to low order numerical algorithm and coarse spatial

resolution (4 × 20 grid) this work was unable to capture the early growth of fingers and

the instability had to be triggered by random variation of permeability in the domain. The

delay in initiation and growth of fingers in the simulations compared to the experiments by

Blackwell et al., could be attributed to the coarse grid size used by Peaceman and Rachford

which did not allow for proper implementation of the adverse mobility ratio responsible for

initiation of the instabilities in the model. In 1987 Christie and Bond [63] attempted to im-

prove the finite difference method of Peaceman et al. [31] by refining the grids to 130× 130

meshes. Finer grid size allowed for the incorporation of higher Péclet number and achieving

a better agreement with the experimental results of Blackwell et al. [54].

In 1988 Araktingi and Orr [64] employed particle-tracking method to simulate viscous

fingering in fully miscible displacements in homogeneous and heterogeneous porous media.

The simulation results for the homogeneous media were validated by comparing the recov-

ery rate of the simulated processes with experimental results of Blackwell et al. [54]. Also
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the mechanisms observed for viscous fingering were compared to those reported by Homsy

[1]. The fingering patterns did not exactly resemble the predictions and the width of the

fingers obtained from the model were about 35% larger than that of the corresponding fin-

gers in LSA. These differences were attributed to the non-inclusion of dispersion in LSA

which made it applicable only to initial growth of fingers. Araktingi and Orr also compared

their simulation results for homogeneous media with Koval’s results [3] by taking the trans-

verse average of concentration at different time steps and determining their locations along

the flow direction. They found that due to the complexity of the front patterns, different

locations may have the same average concentration which makes the assumption of a sin-

gle characteristic velocity for each concentration value inexact. The deviation from Koval’s

assumption was less critical for concentration values near the edges of the concentration

range (i.e. C = 0.1 and C = 0.9) which showed that Koval’s technique might be useful for

predicting breakthrough time and recovery using the velocities of the ends of the mixing

zone.

In the analysis of the effect of heterogeneity on instability, the authors used the corre-

lation length and variance of permeability distribution, which was constructed as a random

variable with log-normal distribution, to define the characteristics of the heterogeneity of

the porous medium. Araktingi and Orr categorized the instability behavior based on the

value of a heterogeneity index (HI) (first introduced by Gelhar and Axness [65]) to show the

dominance of heterogeneity or viscosity. They found that in porous media with high HI the

finger patterns were led by the permeability variations and did not change with changes in

the mobility ratio. Whereas for small HI corresponding to little variation of permeability or

small correlation between high permeable zones, the fingering patterns were similar to those

in homogeneous media. One of the shortcomings of this analysis was that the effects of the

mobility ratio and the flow rate were not considered in the definition of HI and as Chen and

20



www.manaraa.com

Meiburg [66] later showed, the proposed index did not represent all of the characteristics

of the porous medium affecting the instability. In a similar but more systematic analysis

towards the characterization of different heterogeneous media based on the dominant flow

regimes, Waggoner et al. [67] examined miscible displacements in stratified media by per-

forming numerical simulations for different mobility ratios. The heterogeneous media were

generated with different values of Dykstra-Parson’s coefficient VDP and correlation lengths

of permeability lD. Visual study of the instability patterns and the growth rate of the mix-

ing zone revealed three flow regimes described as fingering, dispersive, and channeling. The

fingering and channeling regimes were similarly observed by Araktingi and Orr for small

and large HI values respectively but the dispersive flow which showed no significant form

of instability was first introduced by Waggoner et al. [67]. According to their results for

correlation lengths smaller than a critical value, the heterogeneity of the medium worked

towards increasing the effective dispersion coefficient rather than creating bypassing fingers.

Media with larger VDP tolerated less dispersivity and would show channeling behavior for

smaller lD values. Larger mobility ratios enhanced the development of fingers even in the

channeling regime and reduced the extension of the dispersive regime. The simulated sce-

narios were categorized by their dominating flow regimes and the results were presented on

lD versus VDP plots for different mobility ratios (Figure 2.2). The authors showed that the

lines separating the flow regimes for a constant mobility ratio could be described by con-

stant HI values and thus found the parameter suited for categorization of the flow regimes

in heterogeneous media.

Following their earlier works and using the same method of simulation, Tchelepi and Orr

[68] examined the correlation between dispersion and permeability heterogeneity in miscible

displacements and compared their simulation results with 3D experimental flow instabili-

ties. An analysis of the dispersivity at small mobility ratios showed that although for stable
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Figure 2.2: Critical ranges: (a) M = 1, line separates channeling and dispersive regions, and
(b) at M = 10, lines separate channeling and dispersive regions and dispersive and fingering
regions [67].

flow in homogeneous media the length of the mixing zone was independent of the value of

the mobility ratio (as long as it was smaller than unity), in heterogeneous media a smaller

mobility ratio could suppress the influence of heterogeneity. Although in that sense the dis-

persive flow regime was recognized, all the analyzed cases were limited to favorable mobility

ratios and did not necessarily show the contribution of heterogeneity to the appearance of

the dispersive regime. Their numerical experiments on a highly correlated heterogeneous

medium showing that the medium would not allow dispersive flow even for small mobility

ratios as low as 0.04 was qualitatively in agreement with the results of Waggoner et al. [67].

They also found that the two dimensional simulations were able to represent unstable three

dimensional flow in homogeneous and randomly distributed heterogeneous porous media as

long as the heterogeneity in the third dimension was not significant.

Viscous fingering in porous media with random permeability distribution was further

studied by Tan and Homsy in 1992 [69] through nonlinear simulation of the flow using spec-

tral method. Shinozuka’s analytical scheme [70] for realization of a random permeability

field with Gaussian log distribution was incorporated in their model. Again the correlation

length and variance of the distribution were used to characterize the permeability field. For a
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fixed correlation length, their conclusions were in agreement with Araktingi and Orr’s results

showing that larger variance of permeability resulted in dominated heterogeneous channel-

ing and increased instability. However variation of the length of the mixing zone with the

correlation length was shown to be non-monotonic. The optimum correlation length which

resulted in enhanced propagation of fingers was of the same scale as viscous fingers growing

in homogeneous media in a flow with the same Péclet number. This suggested a resonance

between viscous fingering and heterogeneity instability with commensurate intrinsic length

scales. Furthermore, the nonlinear simulations of the flow in a randomly distributed per-

meability model at fixed Péclet number and variable log mobility ratios showed that the

path the fingers chose to grow in, was dictated by the high permeable regions of the field

whereas nonlinear dynamics and therefore the growth rate of the fingers were dominated and

governed by the pressure fields due to mobility variations [69]. This description applies to

displacements with unfavorable mobility ratios showing channeling flow regime (e.g. cases

23,24,43 and 44 in Figure 2.2b).

Tan and Homsy’s theory of resonance between intrinsic wavelengths of the system and

those of the heterogeneity were in agreement with the experiments of Fernandez et al. [71].

Using magnetic resonance imaging, Fernandez et al. were successful in obtaining 3D visu-

alization of viscous fingers and providing some qualitative analysis of the effects of hetero-

geneity in chromatographic columns. Their qualitative analysis also confirmed the findings

of Tan and Homsy showing that for lower mobility ratios the patterns of the instability were

mainly defined by permeability variations but the growth of the fingers depended on the

mobility ratio and other parameters affecting the dynamics of viscous fingering. The uncon-

trolled heterogeneity and the small size of the samples in the experiments by Fernandez et

al. did not allow for a thorough analysis of the effect of heterogeneity and the observation

of typical mechanisms of viscous fingering.
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In two related studies, De Wit and Homsy [72, 73] performed nonlinear simulations and

linear stability analysis of miscible displacements in media with spatially periodic hetero-

geneity. The linear stability analysis showed that the growth rate of viscous fingers change

by a correction factor, a function of the mobility ratio and the permeability field’s axial wave

number, due to the resonance between wave numbers of the permeability field and those of

the intrinsic viscous fingers. The dominance of viscous fingering or channeling in different

processes was determined by studying the mixing zone length, with a linear growth for vis-

cously unstable flows in homogeneous media and a growth rate of
√
t for viscously stable

ones in heterogeneous media [69, 72]. It was found that for a layered system, the flow in

more permeable layers had a quasi-homogeneous trend. The resonance theory proposed by

Tan and Homsy was again tested in layered media and was found to comply with the results

of the linear stability analysis.

The method used by Tan and Homsy for the realization of a random permeability field

set the base for further investigations by other researchers. Chen and Meiburg in 1998 [66]

adopted the same correlation to generate a random permeability field in their extensive

investigation of miscible displacements in the quarter five-spot configuration. In their work

the relative contribution of viscosity and permeability to vorticity were considered as the

indicator of the preponderance of any of these mechanisms. The resonance between the

heterogeneity and mobility driven instabilities was elaborated on by comparing the variations

of the front thickness with the correlation length of the porous medium and was shown

to lead to lower recovery at the breakthrough. The investigations by Chen and Meiburg

confirmed the previous results regarding the effect of the variance of permeability distribution

on instability, but the effect was found to be more pronounced for some parameter regimes

than others. It was also found that small correlation lengths and high diffusion rates, result

in the heterogeneity to be weakened and the medium to appear homogeneous to the flow.
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The same could apply to the flow in media with very large correlation scales which would

have the same recovery as a homogeneous medium. Chen and Meiburg also examined the

applicability of the heterogeneity index defined by Araktingi and Orr [64] in reducing the

number of independent parameters when defining the regime of instability. They found that

this parameter was not well suited for this purpose and there were other parameters (such

as the mobility ratio or the diffusion rate) involved in this characterization.

Some of the studies on viscous fingering in heterogeneous porous media were based on

the fractal nature of viscous fingering. In these studies, the porous medium was defined

as a combination of pores and throats where pores had a constant size while the radii of

the throats were randomly distributed in the medium. The flow in the designed network

was calculated by solving Darcy’s equation for flow in throats and material balance in pores.

Ferer and his coworkers used this method to analyze the effect of heterogeneity of the medium

on flow stability by characterizing the heterogeneity through the coefficient of variation (the

square root of variance over the mean throat area) [74, 75, 76]. Qualitative observations

of these studies agreed with the findings of other methods showing that viscous fingering

was more independent of the heterogeneity for flows with higher mobility ratio. Although

such studies shed light on some aspects of viscous fingering, the studies were limited to

non-correlated porous media and therefore the interaction between channeling and viscous

instability was actually not considered.

2.3 Melting and Flow Dynamics in Media with Changing Porosity

The model that will be analyzed in Chapters 4 and 5 deals with a dynamic change of the

porosity and the permeability of the porous medium with the advancement of the fluid. The

change occurs due to melting of the solid material (frozen phase) clogging parts of the ma-

trix. So both thermo-viscous fingering and heterogeneity induced instability are expected to
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be involved in this process but with some differences from the previously discussed systems.

The heterogeneity in this model develops as a result of the formation of thermal fingers that

melt the frozen material on their way and form high permeability regions. Therefore the

interactions are expected to be more complex than the discussed thermo-viscous fingering

in heterogeneous porous media. This phenomenon (i.e. dynamic variation of permeability

with fluid flow) that couples different sources of instability in a dynamic manner is observed

in different natural and industrial displacement processes from flow of magma, flow of un-

derground water through frozen soil, and melting of sea ice, to effluent disposal [77] and oil

reservoir extraction [78]. Despite the diverse applicability of the proposed model in different

fields, there is a lack of directly related articles with the same scope, and the review of liter-

ature is inevitably dedicated to the mentioned applications. The similarities and differences

between the model we have adopted and these studies are stressed whenever possible for a

better understanding of the model used in our work.

2.3.1 Melting of Ice in Porous Media

Melting of ice in porous media has been the subject of many studies in different fields from

hydro-mechanics to thermodynamics and geological studies. One of the applications of this

model is in the study of the melting of sea ice as a porous medium. Sea ice forms on the

surface of cold waters (especially in Arctic and Antarctic oceans) and reduces the heating

of the oceans through solar radiations (see Figure 2.3). Sea ice is a habitat for microbial

communities and is even deemed to be able to filter open waters by entraining oil and

other buoyant pollutants in its pores [79]. The one year old sea ice has around 10 to 15%

porosity with an average thickness of 1.5 m [79, 80] (Figure 2.4). During warm seasons

water absorbs orders of magnitude more heat than ice from solar heating due to albedo

effect (more radiation absorbency) and the heated sea water plays an important role in the
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Figure 2.3: Antarctic sea ice melting between September 2008 and February 2009; Courtesy
of the National Snow and Ice Data Center, University of Colorado, Boulder, Colorado.

melting of sea ice [81, 82]. According to the described physics of this phenomenon, the flow

of water through porous ice may have a comparable contribution to the heat transfer and

the melting process as the flow of water around the ice plate does. However, the dynamics

of sea ice melting considering the effect of its porosity on the rate of melting have not been

modeled and the attributed studies consider the heat exchange to happen only at the ice

plates’ boundaries.

In sea ice, the porous medium is built with ice and there are only two phases involved.

But in some other ice-melting problems such as artificial ground freezing (AGF) extensively

used in tunneling, landslide stabilization, mining, and containment of hazardous waste [84]

and also in natural permafrost degradation that affects the performance of structures in

these regions [85], a third phase building the structure of the porous medium is present

(Figure 2.5). The soil (the third phase) is involved in the distribution of energy, fluid, and

the frozen material. Conceptually the water in the under-saturated soil occupies the volume
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Figure 2.4: (A) Microscopic photographs depicting brine pores of laboratory-grown, organ-
ic-free sea ice, (B) ice grown in the presence of organic materials that sculpt the brine pores
[83].

between the particles and the water network is interconnected by thin liquid films on particle

surfaces [86]. Liquid transfer in the soil takes place through these films. Yet the process

of water movement is altered considerably by the presence of the ice phase as freezing (and

thawing) results in heat and mass transfer from warm regions to cold regions [87]. With

the progress of freezing, the salinity of the liquid films increases, and thus their freezing

temperature decreases. The electrical and thermal gradients in the soil provide the driving

force for transport of water in the soil [88]. So in general the flow of fluid in between the soil

and ice particles happens through different mechanisms than the forced convection discussed

in our model. Yet there are natural situations in which the convective heat transfer to the

flowing water cannot be neglected. For example in water saturated layers of ground with

large porosity, the convective heat transfer by the flow of groundwater plays an important

role in melting of frozen jackets during AGF [89]. But even the studies dealing with such

cases assume the water flow to happen in the unfrozen region and use Stefan’s boundary

conditions for the interface between the frozen zone and the melted region [90, 89]. The

definition of the problem and the impermeability of the frozen region except for the narrow

melting zone, along with the prominent role of density variation in such natural convection

problems, make them inherently different from the proposed problem in the present work

and the results cannot be interpreted or be compared between these models. The lack of
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Figure 2.5: Configurations of a single pipe frozen ground;[90].

interest in complication of the problem of melting with the inclusion of convection through

the frozen region may be understandable for field size models. But even in most of the classic

thermodynamic works studying melting of ice in a porous medium, the fluid is only in contact

with ice on its walls [91, 92, 93] and the flow is caused by natural convection in the fluid filled

region. For example in 1986 Kazmierczak et al. [94] considered the melting of a phase change

material in a confined porous medium heated at one end by the application of a constant

temperature boundary condition. Their analytical work was one of the many similar studies

in this area. The study found a similarity solution for the natural convection in the boundary

layer near the solid-fluid interface and showed the profound effect of Stefan number on the

rates of melting and heat transfer. In 1988 Jany and Bejan [95] looked at the same problem

in the limit of vanishing Stefan numbers and relying on numerical experiments and scale

analysis, they found a sequence of these characteristic regimes for the melting process: (i)

conduction, (ii) mixed conduction and convection, and (iii) convection. In 1989 Bejan [92]

proposed a purely analytical treatment of the problem that could describe the three-regime

sequence of the transient heating and melting phenomena. The rate of melting and the

distribution of temperature inside the fluid were found as functions of the Stefan number.

In an experimental and numerical study in 1990, Chellaiah and Viskanta examined the
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melting process and temperature distribution in a glass bead porous medium saturated with

a frozen material [93]. The modeling of this work which was done by Beckermann and

Viskanta in 1988 [96] was among the rare models that considered a melting region in which

there was no thermal equilibrium between the liquid and the frozen phase, by adopting a

mean temperature within a small interval around the fusion temperature. In other words the

liquid and frozen phases were allowed to coexist in a volume element. The volume fraction of

liquid in the element was assumed to vary linearly with the element’s temperature difference

from the fusion temperature. Chellaiah and Viskanta came to the same conclusion as [95]

that the melting at first was dominated by conduction and as times passed, the effect of

natural convection became more important. Although the energy equations of Beckermann

and Viskanta’s model are very close to our model, the range of temperature at the melting

zone and the correlation between the porosity and temperature were imposed independently

of the specific physical situation. These assumptions were shown not to have any significant

effects on the distribution of temperature and the location of the melting wall. Yet the small

range of Stefan numbers used in the simulations and experiments (Ste = 0.05 − 0.4) may

have affected the insensitivity of the results to the chosen functionals.

2.3.2 Flow of Magma and Precipitation-Dissolution Problems

Viscous fingering and variation of the porous medium have also been observed and studied in

flow of magma and problems related to geothermal energy [97, 98, 99, 100, 101] (Figure 2.6).

The porous medium in these models is deformable and expands or compacts in response

to variations of the fluid flux. Even in the models describing flow of magma that do not

consider the medium’s response to pressure variations, a velocity vector is assigned to the

solid particles of the medium [99]. The elasticity of the porous medium which interacts

with the dependence of fluid flux on porosity and produces porosity waves in the medium
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Figure 2.6: Viscous fingering during replenishment of felsic magma [101].

[100], the possibility for different physical phenomena such as fluidization to happen during

the process, the involvement of different minerals in the solid and fluid phases due to their

different origins, and inadequate knowledge of the mechanical and thermal properties of rocks

at such high temperatures make these problems complicated and hard to analyze without

simplifying assumptions [98]. Similar to other geological problems, the gravitational force

is an important factor in defining the pressure field. The proposed model in chapters 4

and 5 lacks many of the details involved in the problem of flow of magma and only general

qualitative results may be applicable in explaining some of the behaviors. Although the

melting process in the magma flow is not very close to our problem, the other aspect which is

the variation of porosity with precipitation/dissolution of a solid phase in the porous medium

does consider the interactions between the flow dynamics and the changes in the permeability

of the medium. Precipitation/dissolution of the solid phase that occurs in magma flows

is also encountered in other geological settings [102, 103]. Infilling or infiltration of pore

spaces, resulting in porosity reduction or formation of worm holes respectively, produce

pockets of high porosity and induce a heterogeneity in the domain (Figure 2.7). The flow

dynamics in addition to the chemical kinetics of precipitation/dissolution are important

factors in determining the patterns of porosity and mineral distribution [104]. In addition
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Figure 2.7: Formation of worm holes in homogeneous porous media due to infiltration of
fluids in carbonate rocks [109].

to changes of porosity and permeability in the medium during reactive transport processes,

the structure of the pore and consequently the porosity-permeability relationship was shown

to be changed [105]. Accounting for such variations required pore scale modeling of crystal

growth and accurate description of precipitation in porous media. While attempts have been

made to verify the geometrical models proposed for the variations of porosity, permeability

and the specific surface area of particular rock types [106, 107, 108], data concerning a wide

range of rocks and reactions remain very limited. Mineral deposition takes place as the fluid

becomes supersaturated with a specific component. Supersaturation may occur through

changes in the fluid pressure and temperature, dissolution of a mineral in the fluid that

results in supersaturation with respect to another mineral, and mixing of two saturated or

under-saturated fluids. The dissolution/precipitation caused by temperature gradients have

been modeled by Olivella et al. [110] who have examined the sealing effect in radioactive

waste disposal in salt rock. The temperature gradients at the unsaturated medium described

induced water fluxes from cold regions to hot regions (and vapor flux from hot regions

to cold regions) a phenomenon known as convection by phase change [110]. This results

in the deposition of salt and a reduction of the porosity at the evaporation zone and its
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dissolution at the condensation zone. The solid phase was assumed to be mobile in the form

of inclusions. The characteristic times corresponding to the transport of different components

(dissolved salt, water vapor, and thermal energy) through diffusion/dispersion, advection,

and convection were defined. The FE simulation results confirmed the proposed sealing

phenomenon at the vicinity of hot regions that shifted the liquid saturated region away from

the hot boundary.

The interplay between the chemical and physical aspects of mineral precipitation has

been also analyzed for fractured porous media by Emmnuel and Berkowitz [103]. The au-

thors examined the experimental findings of Lee and Morse [111] and Hilgers and Urai [112]

that showed the mineral depositions to occur at the inlet of the fractures instead of being

distributed along the length of the fractures by the modeling of mixing induced precipita-

tion. Emmanuel and Berkowitz stressed the important role of specific surface area on the

deposition patterns and incorporated two different models for this parameter assuming that

the porous medium is built of spherical grains [113] or spherical pores [106]. The simula-

tions results showed that even in initially homogeneous systems, the choice of the surface

area-porosity function is important and affects the porosity patterns and chemical reactions.

1D analytical solution for the problem of precipitation/dissolution reactions and the

resulting changes of porosity in a diffusion process were recently sought by Hayek et al. [102].

The solutions were obtained as traveling waves. The choice of the form of solutions made the

admissible boundary conditions limited. The concentration of one of the reactants was fixed

in space and time, and the values of the parameters were set at unrealistic ranges. Even in

the results, the concentrations at the boundary reached such large values that the porosity

could exceed unity. The analytical solutions provided by Hayek et al. had therefore limited

applicability in natural systems and the main application was meant for bench marking

numerical codes. Comparing the analytical solutions with numerical simulation results for
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an explicit and an implicit scheme showed that for reactive transport problems with moderate

porosity changes, only implicit schemes produced accurate solutions and explicit schemes did

not necessarily converge to the analytical solution [102, 114].

In the described systems the change in porosity and species concentration are correlated in

the same manner as in our study except that the effect of convection was mostly neglected in

favor of diffusion. In our model, the change in porosity is governed by heat front and although

it affects the concentration profile, the porosity does not depend on the concentration. So

although melting acts like a dissolution process, it is independent of the concentration value

and mass transfer parameters.

2.3.3 Heavy Oil Recovery Processes

Another example of melting of frozen material in porous media would be melting of bitumen

in heavy oil reservoirs where the inhabitant fluid is immobile and could be deemed frozen at

the initial temperature. One of the most successful processes in recovery of bitumen is steam

assisted gravity drainage (SAGD) during which the steam is injected in a preheated reservoir

through a horizontal well positioned above another horizontal well which produces the water

and oil draining from the formed chamber. The growth of the steam chamber is crucial to

the success of SAGD processes so much that the process is terminated if the chamber does

not reach the expected height at an expected time [115]. So a realistic estimation of the

rise rate of the steam chamber is very important in the design of the process. Due to the

viscosity and density contrast between the steam and the mobilized bitumen, viscous and

gravity fingering is a common phenomenon at the interfaces. The instabilities forming on

the walls and the rising front of the chamber are believed to enhance the heat exchange

rate between the injected fluid and bitumen and to improve the thermal efficiency of the

process. The early models of SAGD process over emphasized the role of fingers in the heat

34



www.manaraa.com

transfer process which not only resulted in over-estimation of the fingers’ lengths but also

predicted rise rates much smaller that those obtained from field thermocouple data (Figure

2.8a). For example the model proposed by Butler [116] predicted steam fingers of 3 m length

for Athabasca bitumen reservoirs while experimental results (though mostly estimations) did

not support such predictions[117, 118]. Later findings focused more on the conductive heat

transfer and showed more moderate results for the finger sizes. In 2005 Ito and Ipek [115]

discussed the steam fingering in SAGD process based on the numerical history matches of

the real field data. The formation of the fingers in this work was mostly attributed to local

geomechanical changes of the formation (such as shear failure and dilation) rather than the

density difference or the mobility contrast. The authors assumed that the majority of the

condensate fell within the wall of the steam fingers while the oil fell at the perimeter of the

fingers and then at the lower part of the fingers it flew through the steam fingers. Such a

counter current flow of oil and steam weakened the steam fingering phenomenon. The size

of the fingers estimated in this work based on the temperature distribution above the steam

chamber were around 2 m long. This estimation was later questioned by Gotawala and Gates

[119] based on the length scale of heat diffusion in Athabasca oil sand that reached 1 − 3

m and could suggest that the temperature contours had reached the thermocouples and not

the steam fingers. Referring to the work by Ito and Ipek [115] Gotawala and Gates [119] also

questioned the significance of steam fingering in growth of steam chambers by putting more

weight on the role of the overall dilation of the medium and conductive heating. They also

commented on some details of Butler’s model like the maximum rise of the fingers happening

off the centerline and predicting a zero rise rate at the center of the finger, to be counter-

intuitive and not supported by experimental results [120]. Gotawala and Gates proposed a

modified version of Butler’s theory which included the effect of the steam density and also

used a more accurate approximation for the temperature profile in the oil sand with keeping

35



www.manaraa.com

seven terms of the Maclaurin series [121] instead of the single term used by Butler. These

modifications resulted in improved estimation of the rise rate of the chamber and corrected

the asymmetry of the results of Butler with respect to the finger’s centerline.

The intense energy consumption of the SAGD process led to attempts to modify this

process through the co-injection of non-condensable gas to form a gas cap and reduce the

heat loss to the over burden [122], low pressure SAGD [123], VAPEX [124], and solvent

aided SAGD (SA-SAGD) [125]. The latter benefits from the combined advantages of solvent

dilution in VAPEX and steam heating in SAGD. But as a brief review of modeling of SAGD

revealed, a clear understanding of the pore scale phenomena is missing which becomes even

less promising when more physical complications such as temperature dependent solubility

and concentration dependent viscosity are added. In a series of interesting studies, Mo-

hammadzadeh and Chatzis investigated the microscale phenomena happening during SAGD

family processes using visualization techniques [126, 127, 128] (Figure 2.8b). The qualita-

tive study of the flow visualizations using glass-etched micromodels with characterized pore

structures confirmed that the steam chamber propagation owed to randomly distributed

fingers on the invading steam front. The steam fingering was observed both on top of the

steam chamber and at the proximity of its side wings although the buoyant front on top

of the chamber produced larger vertically growing fingers. Mohammadzadeh and Chatzis

were also able to characterize the flow regions for steam, and the draining oil-condensate

emulsion under the action of gravity and capillary forces. The approximate thickness of the

flow zones and the flow regimes in these zones provided the required insight for the develop-

ment of more realistic analytical models of the process. The visualizations of SA-SAGD in

a following work revealed an enhancement of the recovery due to the temperature gradient

near the interface of the mobilized oil and the steam-solvent chamber that promoted mass

convection from solvent condensate to bitumen. Despite the fact that in these works the roles
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Figure 2.8: Schematic of SAGD steam chamber a) whole chamber with exaggerated view of
steam fingers [119] b) Pore scale near interface events [128].

of both conductive and convective heat transfer mechanisms were recognized, their relative

importance and the effect of the size of the fingers on the heat transfer process were not

discussed and hence cannot be compared with the theoretical models mentioned earlier. In

SAGD and other similar solvent assisted processes, the phase change in the heating agent

(steam) is an important factor that defines the correlation between the injection pressure

and the latent heat available for melting of bitumen. In addition, the main mechanisms of

flow and instability which are based on the gravitational force and the density contrast are

not included in our model. Yet we strongly believe (and have shown in the results sections

of chapters 4 and 5) that the qualitative understanding of the effect of different parameters

on the melting process gained from the present study are beneficial for these applications as

well.

2.4 Goals and Objectives

Despite the extensive amount of studies on thermo-viscous fingering both on the analytical

stability and nonlinear simulations, some aspects of this problem require further exploration.

One of these aspects is the effect of different combinations of log mobility ratios on the
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stability and the efficiency of non-isothermal displacements. Furthermore, considering the

moving reference frame the instabilities are modeled in, a new measure of the sweep efficiency

of the process that is closer to the definition used in real applications helps in translating

the results to industrial applications.

The review of the literature on heterogeneity induced instability reveals that although

many of the earlier works were devoted to characterization of the porous medium and the

flow regimes in heterogeneous media, the recent stability analyses and numerical simulations

have overlooked this concept. Also the range of parameters used in these studies does not

allow for a conclusive categorization of the flow characteristics. So a more general description

of the flow behavior under different conditions is sought for using a thorough analysis of the

flow regimes for different parameters values.

Finally in research works dealing with melting in porous media despite the importance of

convective heat transfer in melting this mechanism has been ignored in most of the studies.

The effect of convective heat transfer on the melting process and the relative importance of

this mechanism with respect to outer boundary convection (i.e. the convection happening

at the boundaries of the frozen region) are examined in this work. Another objective of this

study is to determine the role of instability in the melting process. Specifically in the heavy

oil recovery processes, the contribution of instabilities on the efficiency and enhancement of

heat transfer is not fully understood. With the knowledge gained from the previous studies

on TVF and flow in heterogeneous media, the new form of instability which involves an inter-

action between different instability mechanisms and phase change during the displacement

process is going to be explored. Through a systematic analysis, the details of the melting

process in unstable scenarios are identified.
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Chapter 3

Dynamics of Fluid Flow and Heat Transfer in

Homogeneous Porous Media

1 Non-isothermal miscible viscous flows in homogeneous porous media is studied by mod-

elling the process in a Hele-Shaw cell. The main focus is on the effect of heat exchange

between the displacing fluid and the solid matrix on the resulting viscous fingering instabil-

ity. The nature of the instability is examined by considering two flow scenarios involving the

displacement of a cold fluid by a hot one and vice-versa. The effects of the heat exchanges

with the surrounding medium and the ratio of the diffusion rates are analyzed both quali-

tatively and quantitatively. Simulation results show that accounting for the heat exchanges

is crucial for the identification of the process stability; although depending on the initial

characteristics of the fluids, the effects may differ significantly. In particular it is found that

the heat exchanges with the porous medium decrease the influence of temperature difference

between the two fluids on the viscosity gradient. Furthermore the diffusion rate of heat in

the fluids can magnify the effect of thermal lag coefficient or compensate for it depending

on the considered scenario As a general rule, for a cold fluid displacing a hot fluid, higher

heat exchange rate and larger diffusion ratio result in flow instability while for a hot fluid

displacing a cold one, an increase in heat exchange rate and diffusion ratio tends to suppress

the growth of the instability.

1This chapter is the exact reproduction of the following journal article:
M. Sajjadi and J. Azaiez, ”Dynamics of Fluid Flow and Heat Transfer in Homogeneous Porous Media”,
Canadian Journal of chemical Engineering, vol. 91, no. 4, pp. 687-697, 2013.
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3.1 INTRODUCTION

Flow displacements in porous media have been the subject of numerous studies due to their

importance in many processes such as enhanced oil recovery, solute transport in aquifers, fil-

tration and packed bed regeneration [40]. In practice, the viscous fingering instability which

occurs when a high-viscosity fluid is displaced by a low-viscosity one, results in early break-

through and a reduction of the efficiency of the displacement process [40]. This instability

appears in the form of finger-shaped penetrations of the displacing fluid into the displaced

one [5, 29, 28]. For extensive reviews on the viscous fingering instability see Homsy (1987)

[1] and McCloud and Maher (1995) [2].

In non-isothermal displacement processes such as hot water flooding, steam flooding,

Steam-Assisted Gravity Drainage (SAGD), hot solvent injection and some polymer process-

ing techniques, the viscosity of the fluids may vary with the concentration of the solvent as

well as the temperature of the fluids. This results in a nonlinear instability that has been

referred to as thermo-viscous fingering [25, 41]. Due to differences in the rate of transport of

heat and mass, thermo-viscous fingering involves two fronts, the first being the concentration

front and the second the thermal front [22, 27]. It has been observed that fingering of each

of these fronts can contribute to the instability of the flow and the rate of growth of the

fingers depends on both effects [25, 52].

Heat exchange between the fluids in thermal processes is believed to reduce the viscosity

contrast at the concentration front and these processes are expected to be less unstable than

their isothermal counterparts [22, 27]. In particular, in an experimental study of immiscible

displacements, Sheorey et al. [51] reached a higher recovery during non-isothermal injections

and reported stabilizing effects of the thermal transfer.

Stability analysis of non-isothermal miscible displacements has been studied in different
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research works. Islam et al. [41, 22, 27] performed both nonlinear simulations and linear

stability analysis of thermo-viscous fingering in rectilinear porous media. They found that

at large values of the Lewis number and small values of porosity, thermo-viscous fingering

is mainly influenced by changes of concentration and is less sensible to the thermal front

[41]. The effect of the porosity which determines the lag between thermal and concentration

fronts, has been presented in the work by Islam et al. The conditions of stability regarding

fluid properties are however missing from their works. Other stability analyses of double

diffusive viscous fingering [52, 23] consider the displacement to take place in a Hele-Shaw

cell and therefore do not encounter different advance rates for the two diffusing fronts.

The most recent stability analysis was performed by Mishra et al. [23] who looked at

the influence of the log mobility ratios of two parameters S and F affecting viscosity with

different diffusivity rates. The slow and fast diffusing parameters, S and F, can represent

concentration and temperature of the fluids. In their work Mishra et al. [23] have shown

that a negative log mobility ratio does not necessarily correspond to a stable displacement

as conventionally expected. As mentioned before the effect of porosity was not included in

their study and hence possible heat exchange with the porous medium was ignored. As is

shown in the present work, these heat exchanges can actually play a major role in the flow.

In this chapter, the viscous fingering of miscible non-isothermal flow displacements are

studied in terms of the fluid characteristics that may affect the instability. The breakthrough

time and the sweep efficiency at the time of breakthrough are used as quantitative measures of

the instability. Considering the porosity of the medium, the effects of thermal lag coefficient

and diffusion ratio on the mechanism of fingering have been studied through an examination

of concentration, temperature and viscosity gradient fields.
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Figure 3.1: Schematic of a horizontal double diffusive flow.

3.2 Physical Problem and Mathematical Model

To analyze the instability, a two-dimensional miscible displacement in a horizontal recti-

linear homogeneous medium of constant porosity φ and permeability κ is considered. The

displacing fluid with viscosity µ1 and uniform temperature T1 is injected at a uniform veloc-

ity U along the x axis to displace a second fluid of viscosity µ2 and uniform temperature T2

(Fig.3.1). The length, width, and thickness of the medium are Lx, Ly, and e, respectively.

Both displacing and displaced fluids are considered to be Newtonian and incompressible.

The mathematical model consists of the conservation of mass and momentum and mass-

energy balance equations:

∂u

∂x
+
∂ν

∂y
= 0 (3.1)

∂P

∂x
= −µu

κ
∂P

∂y
= −µν

κ

(3.2)
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φ
∂C

∂t
+ (u.∇)C = φDC∇2C (3.3)

φ
∂T

∂t
+ λ(u.∇)T = φDT∇2T (3.4)

In the above equations u(u,v) is the velocity vector, P the local pressure, φ the porosity, κ

the permeability, and µ the viscosity. Furthermore, the concentration and temperature are

denoted by C and T respectively, with corresponding mass and thermal diffusion coefficients

DC and DT . Under the assumption of thermal equilibrium between the solid and fluid, the

thermal front travels slower than the fluid front, as heat gets shared between the solid porous

matrix and the fluids. Such effect of redistribution of heat is incorporated in the model in

the form of a thermal lag coefficient λ which represents the ratio of the speed of the thermal

front to that of the solutal front [129, 25]:

λ = 1− UT =
φρfcpf

φρfcpf + (1− φ)ρRcR
(3.5)

Where ρR, cR, ρf , and cpf are the density and heat capacities of the solid phase and fluid phase

respectively. Note that λ ≤ 1 with higher values corresponding to smaller difference between

the velocities of concentration and temperature fronts and lower values corresponding to

higher rates of dissipation of T . Therefore, two fronts associated with the propagation

of temperature and mass can be identified. As a result of heat losses to the surrounding

medium, the thermal front in general will lag behind the solutal one associated with mass.

The flow will be analyzed in a Lagrangian reference frame moving at the velocity U/φ

and the model equations are made dimensionless using diffusive scaling:

(x∗, y∗) =
x, y

DCφ/U
t∗ =

t

DCφ2/U2
(u∗, v∗) =

(u, v)

U/φ

µ∗ =
µ

µ1

p∗ =
P

µ1/κDC

c∗ =
C

C1

θ∗ =
T − T2

T1 − T2

(3.6)
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This results in the following dimensionless equations:

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0

∂p∗

∂x∗
= −µ∗(u∗ + 1),

∂p∗

∂y∗
= −µ∗v∗

∂c∗

∂t∗
+ u∗

∂c∗

∂x∗
+ v∗

∂c∗

∂y∗
=

(
∂2c∗

∂x∗2
+
∂2c∗

∂y∗2

)
∂θ∗

∂t∗
+ λ

(
u∗
∂θ∗

∂x∗
+ v∗

∂θ∗

∂y∗

)
+ (λ− 1)

∂θ∗

∂x∗
= Le

(
∂2θ∗

∂x∗2
+
∂2θ∗

∂y∗2

)
(3.7)

In the above equations Le is the Lewis number:

Le =
DT

DC

=
PeC
PeT

(3.8)

where PeC = ULx/DC and PeT = ULx/DT are the solutal and thermal Péclet numbers,

respectively. For convenience of notation, the stars are dropped from the equations. The

dependence of the viscosity on temperature and concentration of the fluid is defined as an

exponential function ([25, 27, 23]):

µ(c, θ) = exp (βC(1− c) + βT (1− θ)) (3.9)

In this equation βC is the natural logarithm of the viscosity ratio µ1/µ2 in an isothermal

miscible displacement and βT is the natural logarithm of the ratio of the viscosity µ1T/µ2T

in a single fluid flow with two different temperatures. The equations are expressed using a

stream function-vorticity formulation. The curl of the pressure gradient results in a relation

between viscosity and vorticity:

∇P = −(u + i).µ

⇒ (∇×∇)P = −∇× (u + i)µ−∇µ× (u + i) = 0

∇× u = − 1

µ
∇µ× (u + i)

ω = − 1

µ

∂µ

∂c
∇c× (u + i)− 1

µ

∂µ

∂θ
∇θ × (u + i)

(3.10)
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ω = βC{v
∂c

∂x
− (u+ 1)

∂c

∂y
}+ βT{v

∂θ

∂x
− (u+ 1)

∂θ

∂y
} (3.11)

Equation 3.11 provides the relation between concentration and temperature gradients and

vorticity ω. This equation and the relation between stream function and vorticity (ω =

∂v
∂x
− ∂u

∂y
= −∇2ψ) are used to develop the model used in the nonlinear simulations.

∂c

∂t
+
∂ψ

∂y

∂c

∂x
− ∂ψ

∂x

∂c

∂y
= ∇2c (3.12)

∂θ

∂t
+ λ

(
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y

)
+ (λ− 1)

∂θ

∂x
= Le∇2θ (3.13)

ω = −βC
(
∂ψ

∂x

∂c

∂x
+ (

∂ψ

∂y
+ 1)

∂c

∂y

)
− βT

(
∂ψ

∂x

∂θ

∂x
+ (

∂ψ

∂y
+ 1)

∂θ

∂y

)
(3.14)

3.3 Numerical Method

The above system of equations has the following one-dimensional fundamental solution cor-

responding to a zero velocity in the Lagrangian frame:

c̄ =
1

2
erfc

(
x

2
√
t

)
θ̄ =

1

2
erfc

(
x− (λ− 1)t

2
√

Le.t

)
ū(x, y, t) = v̄(x, y, t) = 0

(3.15)

Following Islam and Azaiez (2010), the problem is formulated such that c and θ are expressed

as the sum of the fundamental solutions c̄ and θ̄ and disturbances c′ and θ′. The initial and

boundary conditions are similar to those adopted by Islam and Azaiez [2010].

c0(x, y, t0) = c̄(x, t0) + δ × rand(y)× exp(−x2/σ2)

θ0(x, y, t0) = θ̄(x, t0) + δ × rand(y)

(3.16)
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(ω, c, θ)(−PeC/2− t, y, t) = (0, 1, 1)

(ω, c, θ)(PeC/2− t, y, t) = (0, 0, 0)

(ω, c, θ)(x,PeC/A, t) = (ω, c, θ)(x, 0, t)

(3.17)

where A = Lx/Ly is the cell’s aspect ratio and δ and σ determine the amplitude of per-

turbations and their penetration on the concentration front. t0 is the initial time given to

base state to get diffused. The set of nonlinear partial differential equations is solved using

a pseudo-spectral method based on the Hartley transform. This results in a set of ordinary

differential equations in time, that are solved using an Adams-Bashforth semi-implicit two-

step scheme. According to the expression of the viscosity (Equation 3.9), both concentration

C and temperature T can influence the instability interactively. The interaction between the

two fronts will depend strongly on the thermal lag coefficient which determines the rate of

lagging between the thermal front and the flood front. Hence the thermal lag coefficient will

have a significant importance in predicting the development of the fingers in the process.

3.4 Results

The nonlinear simulations of non-isothermal viscous fingering have been performed by solving

the afore-mentioned system of equations (Equation 3.7). Unless specified otherwise, all

results are presented for PeC = 2000, A = 2, and t0 = 1. The main focus of this study is on

the influence of the thermal lag coefficient λ and the diffusion ratio Le on the instability and

the fingers development. The first analysis will focus on variations of λ for a fixed Le.

3.4.1 Validation of Results

Concentration contours for an isothermal case with βC = 3, βT = 0, PeC = 500 and A = 2

were obtained and matched those reported by Tan and Homsy [8]. For a non-isothermal
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case; βC = 3, βT = 2, Le = 1, λ = 0.75, and PeC = 1000, the results were similar to those

obtained by Islam and Azaiez [27].

3.4.2 Reference Cases

As the first case, viscous fingering in an isothermal flow (βT = 0) is compared with a

non-isothermal flow (βT = 1) for βC = 2. Figure 3.2 shows the concentration contours

of both flows at the break-through time of the non-isothermal case as the fingers reach

the downstream boundary. The thermal and solutal diffusion rates are considered to be

the same (Le = 1) and it assumed that there is no heat exchange between the fluids and

the solid matrix (λ = 1). Therefore both temperature and concentration have the same

contribution to instability and the non-isothermal flow can be thought of as an isothermal

flow with effective βC = 3. Higher log-mobility ratio of the non-isothermal flow results in

enhancement of instability and the growth of more complex fingers in Figure 3.2b compared

to those of Figure 3.2a. It should be noted that in the case of Figure 3.2b, concentration

and temperature contours are identical. The two cases depicted in Figure 3.2 are taken as

references in the subsequent analysis and will be referred to in the discussion.

In general for cases with unit thermal lag coefficient and unit diffusion ratio; both solutal

and thermal fronts are convected and diffuse at the same rates, and the flow dynamics are

equivalent to those of an isothermal displacement with an effective mobility ratio βC + βT .

However, whenever either or both parameters are different from one, the dynamics can be

substantially different. The effects of these two parameters are analyzed in the following

sections.

3.4.3 Effects of the Thermal Lag Coefficient

The role of the thermal lag coefficient is more crucial in some cases as the redistribution of

the heat between the fluids and the solid matrix can de-stabilize an otherwise stable flow or
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a) βT = 0 b) βT = 1

Figure 3.2: Concentration contours comparing an isothermal flow with a non-isothermal
flow: βC = 2, λ = 1, a) βT = 0, b) βT = 1.

vice-versa. In what follows the cases corresponding to the displacement of a cold less viscous

fluid by a hot more viscous one (βC < 0, βT > 0) and that of a hot more viscous fluid by

a cold less viscous one (βC > 0, βT < 0) are examined for a fixed Le = 1. In such cases λ

affects the strength of βC or βT acting against the other to change the instability conditions.

A Hot More Viscous Fluid Displacing A Cold Less Viscous Fluid: Figure 3.3

illustrates the importance of the thermal lag coefficient and of accounting for heat losses to

the surrounding medium. The concentration contours for the case βC = −2 and βT = 3

reveal radically different results in the case where heat losses are accounted for λ = 0.4

versus that when they are ignored λ = 1. In this particular case, concentration gradients

act in favour of the stability while the temperature gradients have a destabilizing effect.

Since in this case βC + βT > 0, the flow is unstable for λ = 1. However, as a result of heat

exchange with the porous medium, the flood front is actually stable for λ = 0.4. For this

flow scenario, lower λ or in other words stronger heat losses to the porous medium acts in

favour of stability in two ways; first by reducing the destabilizing effects of the thermal front
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(a) λ = 1 (b) λ = 0.4

Figure 3.3: Concentration contours at: βC = −2, βT = 3, a) λ = 1 b) λ = 0.4

(a) λ = 1 (b) λ = 0.4

Figure 3.4: Temperature contours at: βC = −2, βT = 3, a)λ = 1 b) λ = 0.4

on the solutal one due to the larger lag between the two fronts, and second by attenuating

the instability at the thermal front due to its lower velocity λU .

The temperature contours for the same displacement process shown in Figure 3.4b with

βT = 3 can be compared to the reference case in Figure 3.2b with the effective log mobility

ratio of βC + βT = 3. Both fronts have the same mobility ratio and it could be expected to

have the same rate of growth of instability fingers if they were traveling at the same velocity.

It is apparent that the fingers on the thermal front are less developed even at t = 1400

compared to the fingers in the reference case at t = 1000. Another reference case with

βC = 3 and Pe = 0.4 × 2000 which is the same as the effective PeT for the non-isothermal

displacement has been studied to isolate the effect of lower heat flow rate from the effect of

the interaction. It has been observed that slower growth of thermal fingers is mainly due to

a smaller rate of heat transport; UT = λU or in this case UT = 0.4U .

Figure 3.5 shows concentration and temperature fields for a similar displacement process
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(a) Concentration (b) Temperature

Figure 3.5: Concentration and temperature contours at: βC = −2, βT = 3, λ = 0.8, a)
Concentration b) Temperature

as in Figure 3.3 but for λ = 0.8. In this case the lag between the two fronts is smaller and

the interaction between temperature and concentration is more significant since the thermal

front has a higher flow rate and remains in the vicinity of the solutal front for a longer time.

Unlike the case with λ = 0.4, the thermal fingers now affect the solutal front and disturb

the flow resulting in backward fingers to form on the solutal front.

A Cold Less Viscous Fluid Displacing A Hot More Viscous Fluid: In the previous

case it was found that heat exchange with the medium attenuates or even suppresses the

instability. An opposite trend is reported in this scenario involving the displacement of a

hot more viscous fluid by a cold less viscous one, (βC > 0, βT < 0). Figures 3.6 to 3.8

depict results for a flow where βC = 2 and βT = −3. In this case heat exchange with

the surrounding medium enhances the instability and can actually destabilize an otherwise

stable flow (Figure 3.6). In such a scenario, the flow is stable in the absence of heat exchanges

(λ = 1), but becomes unstable when the stabilizing thermal front starts to lag behind the

unstable solutal front (λ = 0.5). The corresponding temperature contours are shown in

Figure 3.7. In one case they are coincident with the concentration contours (λ = 1) while in

the other they are disconnected and have moved far in the upstream direction as a result of

the heat exchanges with the porous medium.

To further see the effects of the thermal lag coefficient, λ is set to 0.8 and the correspond-
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(a) λ = 1 (b) λ = 0.5

Figure 3.6: Concentration contours at: βC = 2, βT = −3, a)λ = 1 b) λ = 0.5

(a) λ = 1 (b) λ = 0.5

Figure 3.7: Temperature contours at: βC = 2, βT = −3, a)λ = 1 b) λ = 0.5

ing concentration and temperature contours are shown in Figure 3.8. Due to slower lagging

of the thermal front in this case, there are more interactions between the two fronts acting

towards the growth of some instabilities at the thermal front and a delay in the advance-

ment of fingers on the solutal front compared to those observed in the case with λ = 0.5 as

depicted in Figure 3.6.

(a) Concentration (b) Temperature

Figure 3.8: Concentration and Temperature Contours at: βC = 2, βT = −3, λ = 0.8, a)
Concentration b) Temperature
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3.4.4 Transversely Averaged Properties

Averages of the concentration and temperature fields over the width of the medium are

obtained to determine the distribution of these properties and observe the overlap between

the concentration and temperature mixing zones.

Figure 3.9 depicts results for the case of a hot more viscous fluid displacing a cold less

viscous one that was discussed earlier. Figure 3.9a shows transversely averaged concentration

profiles for three values of λ, while concentration and temperature averages for λ = 0.8 and

λ = 0.4 are depicted in Figures 3.9b and c, respectively. In this scenario, the thermal front

is unstable and the solutal one is stable. It is clear from Figure 3.9a that at λ = 0.4, the

solutal front is essentially stable and is the same as that of the base state. Comparing the

other two curves in this figure with the base state profile, it can be noted that for λ = 1, the

deviations from the base state develop both in the downstream and upstream directions while

for λ = 0.8 they develop towards the upstream of the front. These two profiles correspond

to the standard fingering and backward fingering instabilities discussed earlier. Looking at

Figures 3.9b and c it is observed that the coupling between the two fronts observed for

λ = 0.8 which results in backward fingering has essentially disappeared for λ = 0.4, and

even though the thermal front is unstable it does not affect the solutal one which remains

undisturbed (Figure 3.9c).

Figure 3.10 shows similar graphs but for the case where a cold less viscous fluid displaces

a hot more viscous one. Here the curve of λ = 1 presents a stable flood, and as λ is decreased

the instability becomes stronger. Furthermore in this scenario, the thermal front is stable

and the less it interacts with the solutal front, the more unstable the latter front is. In Figure

3.10b corresponding to λ = 0.8, the stable thermal front interacts with the concentration

front and does not allow backward fingers to develop leading to a better sweep efficiency at

the flooded zone. On the other hand when λ = 0.5, there is essentially no overlap between
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(a) Average Concentration (b) Average C and T for λ = 0.8 (c) Average C and T for λ = 0.4

Figure 3.9: Transversely averaged concentration and temperature distributions for the cases
discussed in Figures 3.3-3.5 at t=1400: a) average concentration for different lag coefficients,
b)average concentration and temperature for λ = 0.8, c)average concentration and temper-
ature for λ = 0.4

(a) Average Concentration (b) Average C and T for λ = 0.8 (c) Average C and T for λ = 0.5

Figure 3.10: Transversely averaged concentration and temperature distributions for the cases
discussed in Figures 3.6-3.8 at t=2000, βC = 2, βT = −3: a) average concentration for
different thermal lag coefficients, b) average concentration and temperature for λ = 0.8, c)
average concentration and temperature for λ = 0.5.
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the two fronts and as a result the concentration front extends both upstream and downstream

(Figure 3.10c).

3.4.5 Breakthrough Time and Sweep Efficiency

One of the parameters that can represent the effect of fingering instability to industrial pur-

poses is the sweep efficiency of the flooding process at the breakthrough time. After break-

through, the solvent is produced at the production end and the efficiency of the flooding

process does not change significantly. Here the breakthrough time is measured by tracking

the mixing zone end and measuring the time it reaches a fixed channel length. The length

of the channel is chosen small enough so that breakthrough occurs in all cases. The break-

through sweep efficiency is the area swept by the solvent concentration of c = 0.5 over the

total area of the channel.

In a hot more viscous fluid displacing a cold less viscous fluid process, the flow becomes

more unstable when the destabilizing thermal front moves close to the solutal front such that

both the breakthrough time and solutal sweep efficiency decrease with increasing thermal

lag coefficient. Figure 3.11 shows variations of the breakthrough time, concentration and

heat sweep efficiency with the thermal lag coefficient λ and for different thermal log mobility

ratios. For small λ the concentration sweep efficiency is virtually constant and close to

one. The breakthrough time is also constant and equal to 1400. These trends are expected

from a stable front. For larger λ the sweep efficiency and breakthrough time decrease due

to enhanced fingering. Larger βT which result in stronger instability on the thermal front

results in induced instability at solutal front and consequently a lower sweep efficiency and

smaller breakthrough times.

In a thermal process, the efficiency of heating is also of interest and is depicted in Figure

3.11c. The efficiency of the heating process depends strongly on λ and varies also with the
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(a) Breakthrough time (b) Concentration Sweep Efficiency (c) Heat Sweep Efficiency

Figure 3.11: The breakthrough time and sweep efficiency of solvent and heat flooding at
breakthrough for βC = −2, and βT = 2, 3, 4: a) Breakthrough time, b) Concentration
Sweep Efficiency, c) Heat Sweep Efficiency.

breakthrough time. The potential area that can be swept by stable thermal front can be

estimated as APotential = LyλUtBT . Although the real area swept by thermal front depends

on its stability, the roles of λ and tBT are more dominant in defining the efficiency of thermal

flooding. The breakthrough time defines the distance the thermal front can travel during the

process before breakthrough. The dependence of heat sweep efficiency on the breakthrough

time becomes more significant for higher λ as the solutal front becomes more unstable and

the breakthrough time decreases significantly. Thermal sweep efficiency increases with in-

creasing λ and is maximum when there is no heat loss to the surrounding porous medium.

If the breakthrough time remains constant with λ, the only parameter changing the heating

efficiency is the velocity of the thermal front and therefore the thermal sweep efficiency fol-

lows a linear trend with λ. Any reduction in breakthrough time reduces the sweep efficiency

of heat, and it can be claimed that any deviation from a linear dependence of heat sweep

efficiency on λ is the result of changes in the breakthrough time. For larger λ, the slope of

the thermal sweep efficiency graph is reduced as a result of close interactions between the

fronts.

Opposite trends for the breakthrough time are obtained in the case involving a cold less

viscous fluid displacing a hot more viscous fluid in Figure 3.12a. Here the breakthrough

time overall increases with λ as a result of the attenuation of the instability with increase
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(a) Breakthrough time (b) Concentration Sweep Efficiency (c) Heat Sweep Efficiency

Figure 3.12: The breakthrough time and sweep efficiency of solvent and heat flooding at
breakthrough for βC = 2, and βT = −1, −2, −3: a) Breakthrough time, b) Concentration
Sweep Efficiency, c) Heat Sweep Efficiency.

of thermal lag coefficient. Actually in this case, a gradual change is observed up to λ = 0.8

followed by a rapid increase thereafter. It is worth noting that for βT = −2 and βT = −3

there is an increasing trend, while for βT = −1 the breakthrough time actually decreases as λ

increases from 0.2 to 0.6. Similar trends for increase with λ are obtained for the concentration

sweep efficiency which reaches its maximum corresponding to a stable displacement process

at λ = 1 for βT = −2 and βT = −3 (Figure 3.12b). In this scenario the thermal front is stable

if not influenced by instabilities at the solutal front and the thermal sweep efficiency curves

follow the linear trend more closely. The slope of the thermal sweep efficiency increases for

large λ = 1 as a result of the stronger interactions with the unstable solutal front and later

breakthrough of the solvent (Figure 3.12c).

Now that we are looking at the efficiency of different displacement processes, it is worth

examining the efficiency and breakthrough time of non-isothermal displacements with com-

position and temperature properties acting in favour of the instability. Although such pro-

cesses are encountered more in oil recovery, the values of the diffusion ratio and thermal lag

coefficient (Le and λ) have actually no effect on the nature of the instability for processes

with βC > 0 and βT > 0 so they have not been included in the previous analysis. Figure

3.13 shows how the breakthrough time and sweep efficiency are affected by λ and illustrate

the severity of the instability when both βC and βT are positive. The trends are in general
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(a) Breakthrough time (b) Concentration Sweep Efficiency (c) Heat Sweep Efficiency

Figure 3.13: The breakthrough time and sweep efficiency of solvent and heat flooding at
breakthrough for βC = 2, and βT = 0, 1, 2: a) Breakthrough time, b) Concentration Sweep
Efficiency, c) Heat Sweep Efficiency.

similar to those shown in Figure 3.11 except that in none of the cases shown here the process

is stable, hence the graphs do not converge at any point to stable conditions. Despite the

experimental observations of Sheorey et al. [51] which indicate higher recovery rates using

non-isothermal displacements, the efficiency of non-isothermal displacements actually show

lower heat and solutal sweep efficiency as βT is increased. This implies that the heating of

a reservoir should be performed to mobilize the oil in place and not to increase the stability

of the displacement process.

3.4.6 Effects of the Lewis Number

At higher heat diffusion rates, the temperature profile has a shallower slope and the thermal

front is more stable on its own. For λ = 1, as Le increases the heat diffuses faster and

the two fluids reach thermal equilibrium faster. Although for λ < 1 higher Le results in

slower separation between the fronts, at the same time it weakens the effect of thermal front

on stability of the solutal front. In this section, the cases discussed so far are going to be

re-examined for a higher diffusion ratio to study the effect of diffusion ratio on stability.

Starting with the cases where a hot more viscous fluid displaces a cold less viscous fluid,

Figure 3.14 shows the flow at the same conditions as in Figure 3.3 but for Le = 10. Higher

Le in this case acts in favour of stability by transferring the heat of displacing fluid to the
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(a) λ = 1 (b) λ = 0.4

Figure 3.14: Concentration contours at: βC = −2, βT = 3, Le = 10, a) λ = 1 b) λ = 0.4

(a) λ = 1 (b) λ = 0.5

Figure 3.15: Concentration contours at: βC = 2, βT = −3, Le = 10, a)λ = 1 b) λ = 0.5

displaced fluid and making the displaced fluid less viscous. So the mobility ratio becomes

more favourable and attenuates the instability (Figure 3.14a). In this case where thermal

front is the cause of instability, higher Le and lower λ stabilize the unstable flow so the

displacement is more stable for λ < 1. This is also true for the case of Figure 3.5 with

λ = 0.8 which shows stability until the thermal front reaches upstream boundaries.

If the case of Figure 3.6 in which a cold less viscous fluid displaces a hot more viscous

fluid, is considered to have a higher heat diffusion rate (higher Le), then low temperature of

displacing fluid cools the displaced fluid faster and makes it more viscous and the displacing

fluid becomes less viscous. Therefore the advantage of having high viscosity due to low

temperature in the displacing fluid vanishes and the flow instability increases. At λ = 1

the stable flow of Figure 3.6a becomes unstable in Figure 3.15a due to diffusion of heat in

between the fluids. The effect of higher Le becomes less important as the thermal front lags

and moves away from the solutal front so at λ = 0.5 the fingers are similar at both Le values.
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(a) Breakthrough time (b) Concentration Sweep Efficiency (c) Heat Sweep Efficiency

Figure 3.16: The breakthrough time and sweep efficiency of solvent and heat flooding at
breakthrough for βC = −2, βT = 2, 3, 4, and Le = 10: a) Breakthrough time, b) Concen-
tration Sweep Efficiency, c) Heat Sweep Efficiency.

The effect of the diffusion ratio on the sweep efficiency and the breakthrough time are

shown in Figures 3.16 to 3.18. For the first case of a hot more viscous fluid displacing a

cold less viscous one, as mentioned before, a lower lag coefficient and a higher diffusion ratio

result in reduced instability. This leads to a breakthrough time tBT = 1400 corresponding

to stable conditions for all λ values when the diffusion ratio is increased to Le = 10. Even

for βC = −2 and βT = 4 which should result in more instability than the case of Figure

3.14a, the results of efficiency and breakthrough time are similar to the stable cases. The

instability for these scenarios arises in later times (like in Figure 3.14a) and to be able to see

its effects on the efficiency, a larger length for the reservoir should be considered. The same

applies to the sweep efficiency of the solutal front which remains relatively constant close

to the efficiency of a stable flow process for the defined parameters and the assigned length

of the reservoir. The sweep efficiency of the thermal front follows a linear behaviour with λ

corresponding to stable conditions as well.

The efficiency and breakthrough time of cases with cold less viscous fluid displacing hot

more viscous fluid for Le = 10 are examined in Figure 3.17. The breakthrough time graph

shows the same trends as those reported for lower Le in Figure 3.12a but with less sensitivity

to λ (which has been elaborated on before). For Le = 10 at λ = 1 the breakthrough time

varies more significantly with the thermal log mobility ratio βT than for Le = 1. This is
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(a) Breakthrough time (b) Concentration Sweep Efficiency (c) Heat Sweep Efficiency

Figure 3.17: The breakthrough time and sweep efficiency of solvent and heat flooding at
breakthrough for βC = 2, βT = −1, −2, −3, and Le = 10: a) Breakthrough time, b)
Concentration Sweep Efficiency, c) Heat Sweep Efficiency.

due to the fact that the case Le = 1 βT = −2 and βT = −3 basically corresponds to stable

flow conditions and even for βT = −1 the instability is not very severe. The change in the

efficiency and breakthrough time for flows with slow growing fingers and higher stability is

less pronounced and requires longer simulation times to be observed. While for unstable flow

conditions, the breakthrough time is smaller and due to fast growth of fingers, the efficiency

of the process is more sensitive to the value of the log mobility ratios which define the scale

of the instability.

Like in the previous cases, the case of positive βC and βT with higher diffusion ratio is

less sensitive to the changes in the thermal lag coefficient (Figure 3.18). Still the highest

sensitivity to βT or strongest instability of the thermal front is observed at λ = 1 when

the interaction between the two fronts is maximum and the thermal front has its highest

strength due to higher flow rate. At lower thermal flow rates (smaller λ values) the heat of

the injected fluid does not affect the process significantly and the flow has similar efficiency

and breakthrough time as the isothermal flow.
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(a) Breakthrough time (b) Concentration Sweep Efficiency (c) Heat Sweep Efficiency

Figure 3.18: The breakthrough time and sweep efficiency of solvent and heat flooding at
breakthrough for βC = 2, βT = 0, 1, 2, and Le = 10: a) Breakthrough time, b) Concentration
Sweep Efficiency, c) Heat Sweep Efficiency.

3.5 Conclusion

In this chapter the influence of thermal lag coefficient and diffusion ratio on thermo-viscous

fingering has been investigated. Nonlinear simulations based on a pseudo-spectral method

have been used to examine the stability of displacement flow at different conditions. To rec-

ognize the physical behavior of the flow the temperature profile of each displacement process

has been analyzed. The average concentration and temperature curves have been used to

study the interaction between thermal and concentration fronts. As a quantitative measure

of instability, breakthrough of mixing zone defined as the distance between dimensionless

concentration (or temperature) values of 0.01 and 0.99 at a defined production end has been

examined for different thermal lag coefficients and different diffusion ratios. The effect of

thermal log mobility ratio has been studied on the efficiency of the displacement and heating

processes and the breakthrough time.

It has been shown that the rate of heat exchange with the medium is a significant factor

in prediction of stability of the displacement process. Two different scenarios have been

discussed the first being a hot more viscous fluid injected to displace a cold less viscous fluid

and the second being a cold less viscous fluid injected to displace a hot more viscous fluid.

The flow in the first scenario with Le = 1 has been shown to be stable at very low thermal
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lag coefficients due to weaker instability on thermal front and less interaction between the

two fronts. At higher λ values the interaction between the two fronts resulted in backward

fingering in concentration front which could affect the sweep efficiency of the process. The

flow showed most enhanced instability at λ = 0.8. The second scenario showed instability for

all levels of heat exchange with the medium except for the case where no heat exchange was

considered to take place in the system. The effect of thermal front on solutal front vanished

when the lag between the two fronts became larger and therefore the effect of λ was limited

to delaying or reducing instability and the criteria of stability did not change with changing

λ except for λ = 1 for which the flow was stable. The discussions about enhancement of

instability at different conditions have been examined by looking at the breakthrough time

and the efficiency of the process which confirm the previous results.

For higher diffusion ratio of Le = 10 in the first scenario (βC < 0, βT > 0) it was observed

that viscous fingering instability driven by temperature gradient is not as powerful as for

lower Le values and the stability of the flow mainly depends on concentration gradient. In

the second scenario with βC > 0 and βT < 0 higher diffusion ratio weakened the stabilizing

effect of negative temperature gradient at all λ values and hence destabilized the flow at

λ = 1. In general the sensitivity of stability to λ decreased as Le was increased and the

stability was mainly led by concentration front.

The effect of the thermal log mobility ratio on the stability and sweep efficiency of the

process have been examined for another case of displacement where both temperature and

concentration profiles contribute to the instability. Although none of the parameters dis-

cussed in this study affect the nature of the instability of such processes, variations of the

efficiency of the process is of particular interest for industrial purposes. The efficiency analy-

ses reveal that higher temperature of the injected fluid for an already unstable displacement

results in enhanced instability and lower sweep efficiency and breakthrough time. This effect
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is weakened for higher diffusion rate of heat and faster heat exchange with the reservoir

rocks, but for moderate values of λ can decrease the efficiency significantly. As a result, it

can be concluded that when heating of the reservoir is the main purpose of the hot fluid

injection (which is the main reason in oil recovery processes), heat sweep efficiency becomes

important which depends highly on the thermal lag coefficient or the heat capacity of the

reservoir and the injected fluid.
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Chapter 4

Scaling and Unified Characterization of Flow

Instabilities in Layered Heterogeneous Porous Media

1 The physics of miscible flow displacements with unfavorable mobility ratios through lay-

ered heterogeneous media are analyzed and the interactions between the instability mecha-

nisms are investigated. The flow model is solved numerically using a pseudo-spectral method

and the effects of various physical parameters such the injection velocity, diffusion, viscosity

and the heterogeneity length scale and variance are examined. The flow instability is char-

acterized qualitatively through concentration contours as well as quantitatively through the

mixing zone length and the breakthrough time. This characterization allowed to identify four

distinct regimes that govern the flow displacement. Furthermore, generalized curves of the

mixing zone length have been generated for any flow scenario in which the first three regimes

of diffusion, channeling and lateral dispersion superpose into a single unifying generalized

curve and allowed to clearly identify the start of the fourth regime of fingering. A critical

effective Péclet number w∗c based on the layers width is proposed to distinguish flow regimes

where heterogeneity effects are expected to be important from those where the flow can be

safely treated as homogeneous. A similar scaling of the breakthrough time was obtained and

allowed to identify two optimal effective Péclet numbers w∗opt that result in the longest and

1This chapter is the exact reproduction of the following journal article:
M. Sajjadi and J. Azaiez, ”Scaling and Unified Characterization of Flow Instabilities in Layered Heteroge-
neous Porous Media”, Physical Review E (Statistical, Nonlinear and Soft Matter Physics), vol. 88, no. 3,
pp. 033017 (12 pp.), 2013.
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shortest breakthrough time for any flow displacement.

4.1 Introduction

The problem of instability in miscible displacements is encountered in a variety of applica-

tions such as polymer processing, fixed bed regeneration, chromatographic separations [72],

as well as in oil recovery processes where phase behavior acts in favor of local efficiency of

the displacement through miscible flooding. Yet, in many applications, a lower viscosity of

the injected solvent results in reduced sweep efficiency of the process due to viscous insta-

bilities. Viscous instabilities have been the subject of numerous studies since 1952 when

Hill conducted a linear stability analysis along with experiments to examine the coupling

between gravity driven and viscous driven instabilities [5]. Interested readers are referred to

the reviews of Homsy [1] and McCloud and Maher [2] on viscous fingering in porous media.

Other forms of this problem considering non-monotonic viscosity profile [40], non-Newtonian

fluids [12], heat transfer in the system [22, 27, 23, 24, 130], and chemical reaction [14, 16, 15]

can be found in the literature.

In field applications, the reservoir rocks have variable permeability and are rarely homo-

geneous. The non-uniform distribution of the permeability changes the preferred path of the

flow and becomes the source of another instability mechanism known as channeling. Viscous

and heterogeneity induced instabilities appear in the form of extended tails of the injected

fluid, called fingers. The faster these fingers grow, the faster the injected fluid reaches the

production end, and the flow is characterized as more unstable.

Due to its numerous applications, this problem has been studied extensively by re-

searchers working in different fields varying from geology to chemical and petroleum in-

dustries. A large number of the investigations have attempted to determine the criteria

for the dominance of any of the viscous or heterogeneity mechanisms in the flow. Such
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attempts started with quantification of the heterogeneity with a single parameter such as

the Dykstra-Parson’s coefficient VDP or Lorenz coefficient LC in stratified reservoirs [58] or

through geometric parameters for artificially built heterogeneous systems [76, 131]. These

parameters have mainly considered the range of variations of permeability and the frequency

of these variations to describe the severity of the heterogeneity [57]. In these works, the rel-

ative importance of heterogeneity to that of viscous forces traditionally measured through

mobility ratio, has been qualitatively determined for constant mobility ratios.

Koval’s method in proposing a single factor K = HE that combined the effects of hetero-

geneity H and viscous forces E was among the rare quantitative analyses in this regard [3].

Although Koval’s factors have been useful in the determination of the loss of efficiency due

to both instability mechanisms, it was limited to 1D studies and did not analyze the mech-

anisms of instability and finger structures. Another quantitative analysis was conducted by

Sorbie et al. [132] where the VDP and the correlation length lD of random heterogeneity were

used as measures of the severity of the heterogeneity. The effects of the ratio of the transverse

(kz) to longitudinal (kx) permeability on the flow regimes were investigated using an effec-

tive aspect ratio RL = A
√
kz/kx, where A is the geometric aspect ratio. It was found that

large values of RL corresponding to transverse (vertical) equilibrium (TE) conditions result

in dispersive flow while scenarios far from the TE conditions, namely in Dykstra-Parson’s

regimes (DP) result in isolated channeled fingers. However the effect of RL was shown to be

important only for very small correlation lengths and became negligible even for lD = 0.1.

The authors commented that for layered media, transverse permeability may not have sig-

nificant effects on the flow except for neutral mobility ratio. In a subsequent study, Yang et

al. [133] used asymptotic analysis to analyze flows with no dispersion in spatially uncorre-

lated heterogeneous media for limiting values of the parameter RL. The asymptotic analysis

was compared with predictions from full numerical simulations and allowed to separate and
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characterize the flow in the limiting regimes.

The first experimental study on miscible flows through heterogeneous porous media was

performed by Balckwell et al. in 1959 [54] and has been a reference for many subsequent

analytical and numerical studies. Among these, one should cite the study of Araktingi and

Orr [64] who have used the particle-tracking method to successfully model miscible flows

through heterogeneous porous media and have reported results that are in agreement with

the experimental ones by Blackwell et al. [54].

The pseudo-spectral method was also used by Tan and Homsy [69] to study the effects of

random permeability variations with Gaussian log distribution on viscous fingering. In both

studies, the effects of variance and correlation length of the permeability distribution on the

growth rate of the instabilities were analyzed. In particular, Araktingi and Orr [64] observed

a monotonic increase of the instability with both the correlation length and the variance of the

heterogeneity. Tan and Homsy [69] observed a maximum growth rate at a certain correlation

length of heterogeneity and discussed the resonance between the mechanisms of instabilities

at an optimum correlation length, commensurate with the intrinsic scale of viscous fingers.

These two studies were later followed by linear stability analysis and nonlinear simulation

studies [72, 73, 66, 134]. In particular, the study by De Wit and Homsy [72, 73] who focused

on media with harmonically varying permeability, showed that the wave number at which

resonance is observed depends on the log mobility ratio and the Péclet number.

In this chapter, a thorough examination of the effects of different parameters on the de-

velopment of the instability in heterogeneous media is presented. The study will analyze the

different regimes of the flows and will propose a unified picture of the flow that incorporates

the effects of all pertinent parameters, including the injection velocity, diffusion rate, the

mobility ratio as well as the characteristics of the heterogeneous medium such as variance

and length scale of permeability.

67



www.manaraa.com

Figure 4.1: Schematic of the flow,

4.2 Physical Model and Numerical Method

Figure 4.1 shows a schematic of the simplified model used in this work. A fluid (fluid 1) with

uniform concentration C1 is injected in the heterogeneous porous medium with an average

velocity U to displace the resident fluid (fluid 2) of uniform concentration C2. The flow is

assumed to be incompressible, Newtonian and isothermal, and is governed by the equations

for the conservation of mass and momentum and the mass convection-diffusion [22].

∂u

∂x
+
∂ν

∂y
= 0 (4.1)

∂P

∂x
= −µφu

κ
∂P

∂y
= −µφν

κ

(4.2)

∂C

∂t
+ (u.∇)C = DC∇2C (4.3)

In the above equations u(u,v) is the interstitial velocity vector, P the local pressure,

κ local permeability, φ the porosity and µ the viscosity. Furthermore, the concentration
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is denoted by C and the mass diffusion coefficient by DC . Following Tan and Homsy [8],

diffusive scaling is used to make the equations dimensionless:

(x̂, y∗) =
x, y

DCφ/U
t∗ =

t

DCφ2/U2
(û, v∗) =

(u, v)

U/φ
p∗ =

P

DCµ1φ/κ1

µ∗ =
µ

µ1

κ∗ =
κ

κ1

c∗ =
C

C1

(4.4)

The permeability is scaled by the average permeability of the medium; κ1 . A Lagrangian

reference frame moving with the average injection velocity, U/φ, is used so x∗ = x̂− t∗ and

u∗ = û− 1, and the resulting dimensionless equations are:

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0

∂p∗

∂x∗
= −µ

∗

κ∗
(u∗ + 1),

∂p∗

∂y∗
= −µ

∗

κ∗
v∗

∂c∗

∂t∗
+ u∗

∂c∗

∂x∗
+ v∗

∂c∗

∂y∗
=

(
∂2c∗

∂x∗2
+
∂2c∗

∂y∗2

) (4.5)

Henceforth, the stars are dropped for simplicity. In the above equations, two variables need

to be specified to close the formulation of the problem. First, the nature of dependence

of the viscosity on concentration must be specified. In this study, an exponential depen-

dence of the viscosity on concentration [25, 41, 23] is adopted unless indicated otherwise.

Such a dependence closely characterizes the ”quarter power mixing rule” widely used in

petroleum industry to describe viscosity of non associating mixtures and also mixtures of

diluted aqueous solutions [135, 136, 137]:

µ(c) = exp[βC(1− c)] (4.6)

In the above equation βC is the natural logarithm of the viscosity ratio µ2/µ1 and is related

to the mobility ratio M as βC = ln(M). Furthermore, the form of the permeability used

to characterize the heterogeneity of the medium needs to be defined. At the pore scale, the

variability of the permeability should be negligible for Darcy’s description of the flow to be

applicable. But it should be sensed by the flow in larger scale for the medium to be called
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(a) (b)

Figure 4.2: Periodic permeability models with permeability varying between κ = 0.7 and
κ = 1.6 for s = 0.5; a) q = 1 and b) q = 9

heterogeneous. In the present study the permeability of the medium is assumed to vary

only in the transverse (y) direction. As it shall be seen later, the gradient of the natural

log of the permeability f = ln(k) appears in the definition of the vorticity and therefore

the heterogeneity will be characterized using the natural log of the permeability; f . For a

layered heterogeneous medium, f is defined as [72]:

f = ln[κ(x, y)] = s cos(
2π

ly
qy) (4.7)

where s is the range of variation of f while q is the frequency of layers across the flow

channel in the y direction and ly is the dimensionless width of the domain. Two examples

of heterogeneity models for different values of q are shown in Figure 4.2. Although this

adopted periodic permeability is a simple model of heterogeneity, it still allows to reveal

some of the mechanisms that can occur in more stochastic permeability models that are

difficult to characterize due to the complexity of such models.

Using the definition of vorticity (ω) and the stream function (ψ) where ∇2ψ = −ω, and

adopting the correlations for the viscosity and natural log of the permeability, the set of

equations 4.5 lead to:

∂c

∂t
+
∂ψ

∂y

∂c

∂x
− ∂ψ

∂x

∂c

∂y
= ∇2c (4.8)
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ω = (∇ψ + j).(
∂(ln(µ))

∂c
.∇c−∇ lnκ)

= −(∇ψ + j). (βC∇c+∇f)

(4.9)

These dimensionless equations admit a base-state solution c̄ corresponding to a uniform

injection velocity (in the moving reference frame; ū = v̄ = 0):

c̄ =
1

2
erfc

(
x

2
√
t

)
(4.10)

The equations are transformed in Hartley space using the Hartley transform [138]. This

method has the advantage of increasing the accuracy of differentiations in space but requires

periodic boundary conditions. Therefore, the solution is sought as the sum of the base state

profile c̄ and perturbations (c′) that decay far upstream and downstream [139]. This leads

to a nonlinear ordinary differential equation for the concentration perturbation coupled with

algebraic equations for the vorticity, all expressed in the Hartley transform space [139]. Since

the non-periodic part of the solution is calculated analytically through base state Equation

4.10, periodic boundary and initial conditions can be set for the perturbed concentration

and for vorticity as:

(ω′, c′)(−Pe/2, y, t) = (0, 0)

(ω′, c′)(Pe/2, y, t) = (0, 0)

(ω′, c′)(x,Pe/A, t) = (ω′, c′)(x, 0, t)

(ω′, c′)(x, y, 0) = (δ rand(y)e−x
2/σ2

, 0)

(4.11)

In the above equations, Pe = ULx
DC

is the Péclet number and A = Lx/Ly is the aspect ratio

of the domain. In dimensionless form lx = Pe and ly = Pe/A are the length and the width

of the medium respectively.

The differential equation for the transform of the concentration perturbation is stepped in

time using a fourth-order Adams-Bashforth/Adams-Moulton scheme with operator splitting.
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Furthermore, under-relaxation was used in the iterative process relating the vorticity to the

stream-function. This algorithm was shown to be numerically stable and highly accurate for

Péclet numbers as high as Pe = 1750 for log-mobility ratio βC = 5 and for βC as large as

βC = 7 when Pe = 500. More details about the numerical algorithm are found in [139, 140]

The numerical method was validated by comparing the time evolution and the related

viscous fingers interactions for the homogeneous case where βC = 3, Pe = 500, and A = 2

with those of Tan and Homsy [8]. Furthermore, the convergence of the numerical solution

was examined by considering cases with different spatial resolutions varying from 256×256 to

1024× 1024 while changing the time step accordingly. In particular, for the largest mobility

ratio examined, βC = 5, the convergence was confirmed by checking that the concentration

contours based on grids of 512× 512 and 1024× 1024 were actually identical.

4.3 Results and Discussion

As mentioned before, a heterogeneous medium is characterized by the length scale and vari-

ance of the permeability distribution. In the periodic permeability field defined by Equation

4.7, the width of the channels which varies like the inverse of the number of layers can be

regarded as the length scale of heterogeneity while s gives a reasonable estimation of the

variance of the permeability distribution. In a first stage, the focus will be on the effects of

the permeability length scale (number of layers q) on the flow structures and growth of the

mixing zone. The analysis will be then expanded to analyze the effects of other parameters

and examine the flow breakthrough time. Unless specified otherwise, the mobility ratio,

permeability variance, Péclet number and cell aspect ratio are fixed as βC = 3, s = 0.1,

Pe = 1024, and A = 2.
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4.3.1 Flow Structures

In this section, the results are presented in the form of time sequences of concentration

contours which vary between zero and one. For brevity, the time sequences are presented

not necessarily at the same time intervals, and only the frames that help characterize and

understand the development of the flow are shown.

In Figure 4.3 two flow displacements through layered media with q = 2 and q = 9 are

compared with that in a homogeneous medium. It is clear that the flow structures differ

from one case to the other, with the fingers extending faster in the flow direction in the case

of the 2-layers and slower in the nine-layer medium. The number of initial fingers in the

heterogeneous cases is determined solely by the number of layers while it depends on the flow

properties (Pe, βC) in the homogeneous medium. In the latter case, the number of fingers

decreases through a number of interaction mechanisms that have already been discussed

in the literature. Focusing on the heterogeneous scenarios, the fingers in the two-layered

medium remain constrained within the high permeable channels which is to be contrasted

with the nine-layer medium where from the initial nine fingers, only two end up dominating

the flow at later times.

The smaller length scale of heterogeneity in the nine-layer medium results in larger ∇f

and a rapid growth of instabilities at early times (t = 100). However the fingers in the wider

channels of the double-layer medium end up surpassing those in the nine-layer medium.

This can be explained by the fact that the instability in the double layer medium is driven

by the so-called channeling mechanism in which the dynamics are governed by the viscous

forces and the paths of the flow are dictated by the heterogeneity of the medium [69]. In

this case, viscous and heterogeneity driven forces keep acting with two distinct sharp fingers

extending and developing independently until the flow reaches the downstream boundary.

In the nine-layer medium however, due to the smaller channels width, after a while the
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fingers get so close to each other that further development and growth is stalled in favor of

lateral dispersion across the channels. This dispersion causes the channeled fingers to fade

into a thick wavy front. Since the growth of fingers during this dispersive stage is slow, the

thickness of the dispersed front is virtually the same as the length of the fingers at the start

of the dispersion. It is anticipated that an even smaller width of the layers will result in

earlier start of dispersion and a thinner dispersed front. Later, instabilities develop at the

front as a result of viscous forces as shown in Figure 4.3c and lead to two dominant fingers.

These instabilities are not dictated by the heterogeneity of the nine-layer medium but the

thickness of the front (influenced by the thickness of the layers) is expected to affect the

number of emerging fingers as well as their growth rates.

The differences between the two heterogeneous displacements and the homogeneous one

help explain different phenomena observed in experimental and numerical studies of flow

through heterogeneous porous media. In particular, the dispersion of fingers across the

channels in the nine-layer medium results in stronger mixing of the fluids which explains the

increase in macroscopic dispersion in heterogeneous media reported in different simulation

and experimental studies [141, 142]. Furthermore, the fact that the effects of heterogeneity in

the nine-layer medium pales as the dispersion of fingers across the channels occurs and that

the later fingers are not determined by the channels (see Figure 4.3c) confirms the results

of [64] where it was reported that for smaller correlation length of heterogeneity, fingers do

not follow high permeable channels.

In what follows, the flow instability in heterogeneous media is characterized through a

quantitative analysis. In specie, the length of the mixing zone along the flow direction [7]

and the breakthrough time [66] are used to quantify and characterize the instability.
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(a) Homogeneous medium (b) Double layer medium (c) Nine layer medium

Figure 4.3: Concentration contours for a viscously unstable flow with βC = 3, Pe = 1024,
and A = 2 in a) a homogeneous medium, b) a double-layer heterogeneous medium, and c)
a nine-layer heterogeneous medium. In each frame the red color (left) represents c = 1 and
the blue color (right) represents c = 0.

4.3.2 Mixing Length

By averaging the values of concentration across the flow channel Mixing Zone length (MZL)

is determined. The mixing zone is defined as the zone with average concentration values

between 0.01 and 0.99 [8].

cav(x) =
1

ly

ly∫
0

c(x, y)dy

MZL = xcav=0.01 − xcav=0.99

(4.12)

To elaborate more on the behavior of the flow with time, the variation of the MZL with time

is depicted in Figure 4.4 for the nine-layer case discussed above. For comparison purposes,

the MZL of the viscously unstable flow in a homogeneous medium as well as those of neutral

flow (βC = 0) in the nine layer medium and in a homogeneous medium are also presented.

Figure 4.4a illustrates the whole curves in log-log scales to elucidate the trend of growth of

mixing zone while Figure 4.4b focuses on the initial stages of the flow in linear scales.
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(a) (b)

Figure 4.4: Mixing zone length versus time for stable and unstable flows in homogeneous
medium and in a nine-layer heterogeneous medium; Pe = 1024, A = 2, s = 0.1, a) throughout
the process in logarithmic scales, b) at early times.

It can be seen from Figure 4.4 that the viscously stable flow (βC = 0) shows dispersive

behavior in both the homogeneous medium and the nine-layer medium with its MZL growing

as
√
t. In a homogeneous porous medium, the unstable flow (βC = 3) goes first through

a dispersive regime similar to that observed in the stable flow. This first regime which

lasts up to t ' 200 is followed by the development of viscous instability where MZL grows

almost linearly with time (see Figure 4.4b). In the nine-layer medium, the unstable flow

also goes through initial dispersion but the MZL graph follows that of the viscously stable

flow in the heterogeneous medium which has a slightly higher dispersion rate than that

in the homogeneous medium. Around t ' 25, viscous forces help channeled fingers grow

faster than the viscously stable scenario. At this stage, even though the fingers follow the

path dictated by the heterogeneity, their growth rate depends on both viscous forces and

heterogeneity. Later, the growth rate of the MZL decreases as the fingers start to disperse

across the channels. Lateral dispersion continues until the gradient of concentration across

the channels becomes negligible. Subsequently, viscous instabilities develop on the dispersed

front at around t ' 1400 and viscous fingering becomes the dominant regime resulting in a

sudden increase of the MZL.
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We will now investigate the effect of the length scale of the heterogeneity (width of the

channels) on the flow behavior. To this end, more numerical simulations were conducted

for various numbers of layers and the corresponding MZL were determined. Figure 4.5

depicts the variations of the MZL for the homogeneous medium and for heterogeneous media

with q = 2, 5, 7, 9, and 15. This figure reveals that regardless of the number of layers, the

heterogeneous flows go through the same regimes identified earlier in the special case of the

nine-layer medium. However, the extent and strength of these regimes vary from one case

to the other, and in some cases such as the two-layer medium, the channeled fingers reach

the domain boundary before lateral dispersion of fingers can be actually observed. As can

be seen in Figure 4.3, the growth rate of the mixing zone is larger at the initial stages of

the flow for media for larger number of layers because of larger ∇f . Therefore, at early

times the growth rate of MZL increases monotonically with increasing q as shown in Figure

4.5b. At later times however, a larger number of layers reduces the width of the channels

and as a result speeds up lateral dispersion. Therefore the front becomes uniform across the

medium faster and the last stage of viscous fingering develops earlier. As can be seen, the

two regimes of channeling and dispersion that precede the viscous fingering are shortened as

the number of layers is increased. As we shall see later, for a large enough number of layers,

the MZL of the layered heterogeneous medium will actually asymptotically approach that

of the homogeneous medium where only the initial diffusive regime and viscous fingering are

observed.

Hydrodynamic Scaling

The close similarity in the curves for different numbers of layers raises the question of whether

it is possible to obtain a single curve that can describe the variations of the MZL for any

arbitrary number of layers. In order to explore this idea, it is proposed to analyze the

main parameters that govern the flows in the different regimes identified earlier. First one
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(a) (b)

Figure 4.5: Mixing zone length versus time for heterogeneous media with different number
of layers for βC = 3, Pe = 1024, A = 2 and s = 0.1; a) throughout the process, b) at the
initial times (fewer graphs are shown for better distinction between the lines).

can note that the first stages of the instability are mainly governed by the flow within the

high permeability layers. This suggest to characterize the instability at this scale. Hence, a

characteristic time for lateral dispersion across a layer of width w = Ly/q and a character-

istic length in the streamwise direction are defined as tc = w2/DC and xc = Uw2/(DCφ),

respectively. In dimensionless form these characteristic parameters become:

t∗c =
tc

DCφ2/U2
=

(w∗ ×DCφ/U)2/DC

DCφ2/U2
= w∗2

x∗c =
xc

DCφ/U
=
U(w∗ ×DCφ/U)2/(DCφ)

DCφ/U
= w∗2

(4.13)

The stars on the dimensionless parameters were retained to distinguish them from the di-

mensional ones. The width of the domain in dimensionless form is ly = Pe/A and the

dimensionless width of each layer can be determined as w∗ = Pe/(q.A). A generalized time

t̃ and length x̃ are then defined as:

t̃ =
t

tc
=
t∗

t∗c
=

t∗

( Pe
q.A

)2

x̃ =
x

xc
=
x∗

x∗c
=

x∗

( Pe
q.A

)2

(4.14)
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A large number of simulations were conducted for many combinations of a wide range of

parameters with Pe = 512, 1024, 2048, A = 2, 4, 8, and q = 1 to 20, and the mixing lengths

were determined. The corresponding generalized mixing zone lengths ( ˜MZL = MZL/xc)

are plotted versus the generalized time and are shown in Figure 4.6a. It is clear that the

scaling does indeed result in a single curve for different displacement scenarios. Even for

cases where the simulations stopped due to the fingers reaching the boundaries, ˜MZL still

follows the unifying generalized curve. However, it should be stressed that the different

curves do superpose only up to the time where the viscous fingering regime starts. At this

convective regime, the growth rate of the MZL depends on the Péclet number and cannot

be predicted based only on this dispersive scaling. The results of this scaling imply that the

quantitative behavior of the displacement can be predicted for any given scenario and length

scale of permeability variations.

The proposed generalization allows identifying and defining the different dominant flow

regimes and the transition times in between these regimes. Figure 4.6b shows a log-log

plot of the ˜MZL versus t̃ with trend lines fit to each segment categorizing a particular flow

regime. These regimes can be identified as initial diffusion, channeling, lateral dispersion,

and viscous fingering. In the initial diffusion regime, ˜MZL grows almost as
√
t̃. The coupling

between viscous forces and heterogeneity increases the growth rate of ˜MZL to almost a

linear function of time; t̃1.01 and leads to the channeling regime. In the third regime, lateral

dispersion causes the growth rate to decrease to less than the initial diffusion regime and

˜MZL ≡ t̃0.32. Ultimately viscous fingering leads to ˜MZL growing faster than in previous

regimes. The transition from initial diffusion to channeling occurs at t̃dC ≈ 0.01 while that

from channeling to lateral dispersion is at t̃CD ≈ 0.07. Finally lateral dispersion leads to

viscous fingering which develops at different times depending on the value of Pe.

The scaling group w∗ = Pe/(q.A) = Uw/DC suggests that larger velocity, weaker dif-
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(a) (b)

Figure 4.6: Generalized MZL versus generalized time for βC = 3 and s = 0.1; a) for
w∗ = 25.6, 51.2, 56.9, 64, 73.1, 102.4, 113.8, 128, 146.3, 170.7, 204.8, 256, 241.3, and
512, b) for w∗ = 51.2 in log-log scale indicating the flow regimes.

fusion rate or larger channels width result in a slower transition from channeling to lateral

dispersion and further to viscous fingering. In all these cases, fingers develop individually in

the channels and grow longer with minimum interactions. Such fingers require more time to

get transversely dispersed and the flow stays in the lateral dispersion regime for longer time

before viscous fingering starts.

Small values of w∗ however, result in stronger dispersion compared to the rate of advance-

ment of instabilities and hinders the development of channeling. In such cases, emerging

channeling fingers if any, will fade rapidly into a dispersed front in the early stages of the

flow, allowing viscous fingering to develop across that front. In an extreme case, a layered

system with a large enough number of layers will not experience channeling or lateral dis-

persion and will go directly through viscous fingering as in a homogeneous porous medium.

Therefore as w∗ decreases, ˜MZL deviates from the unifying generalized curve characterizing

the flow in a heterogeneous medium, and as we shall see later, MZL will approach that of a

homogeneous case. One can therefore select a critical value of the effective Péclet number w∗c

to separate flows in which heterogeneity is dominant from those in which it can be ignored.

The value of this critical Péclet number can be determined on the basis of the extent of
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Figure 4.7: Weak effect of heterogeneity in media with small dimensionless width of layers
for βC = 3, s = 0.1, Pe = 200, and A = 2

the lateral dispersion regime and specifically the slope of the ˜MZL in that region. Hence a

displacement flow with ˜MZL slope in the lateral dispersion region of more than about t0.4

(the slope of the lateral dispersion regime on the curve corresponding to w∗ = 25.6) leans

towards a homogeneous system and the effects of heterogeneity can be deemed negligible.

To further illustrate these conclusions, the MZL for Pe/(q.A) = 11.11 and for Pe/(q.A) =

5 as well as for the homogeneous medium are depicted in Figure 4.7. The results are presented

in terms of MZL since ˜MZL is not defined for a homogeneous medium. It is clear that the

curves are virtually indistinguishable, indicating that flows in such heterogeneous media

essentially behave like in a homogeneous medium, at least in terms of their MZL.

The close similarity between heterogeneous flows with small effective Péclet number w∗

and those in homogeneous medium was actually found to be not limited to quantitative

properties such as the MZL, but is also observed in the actual flow structures. Figure

4.8 shows concentration contours for the homogeneous medium and heterogeneous media

with w∗ = 11.11 and w∗ = 33.3 at t = 300. It is clear that the flow structures in the

homogeneous medium and the heterogeneous one with w∗ = 11.11 are virtually identical

while the effects of heterogeneity manifested in the form of fingers developing in the high
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(a) Homogeneous (b) q = 9 (c) q = 3

Figure 4.8: Concentration contours for βC = 3, Pe = 200, A = 2, a) homogeneous porous
medium and b) 9-layer heterogeneity, w∗ = 11.1, c) 3-layer heterogeneity, w∗ = 33.3. In each
frame the red color (left) represents c = 1 and the blue color (right) represents c = 0.

permeability channels are dominant in the medium with w∗ = 33.3. This further confirms

the criteria based on the parameter w∗ to define a limit for a permeability length scale below

which the effects of heterogeneity are so small that they do not play any significant role in

driving the instabilities, and the medium can be treated as homogeneous in terms of the

flow dynamics. As a general guideline, one may treat flow displacements in heterogeneous

media as effectively homogeneous flows for w∗ < w∗c−h = 15 and as heterogeneous flows for

w∗ > w∗c−H = 30.

It is important at this stage to note that the generalized curve in Figure 4.6b was gener-

ated for given values of the log mobility ratio (βC = 3) and permeability variance (s = 0.1).

It would therefore be interesting to determine how the previous conclusions may change for

other values of βC and s.

Figure 4.9 depicts generalized curves for different combinations of (βC , s). Regardless of

the values of βC or s, all curves follow the same trends and go through the different regimes

that have been identified earlier. It is worth noting that increasing s has the same effect

on ˜MZL as decreasing q had on MZL in Figure 4.5. Higher permeability variance leads

to stronger growth rate of fingers inside the channels during the channeling regime, while it

delays the transition to viscous fingering. This is different from the effect of the viscosity

ratio which shortens the transition regime as it increases the growth rate of instabilities in

all regimes.
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Figure 4.9: Generalized MZL for different combinations of mobility ratio and variance of
permeability distribution (βC , s)

Based on the results in Figure 4.9 one may wonder if the scaling developed so far can

be further extended to include the effects of the heterogeneity variance and viscosity. These

two aspects are examined in the following sections.

Heterogeneity Scaling

A proper scaling of MZL to account for the effects of changes in the permeability variance can

be accomplished by dividing both the generalized length and time by κc = exp(2× s), which

is the ratio between the maximum and minimum permeability values. This scaling can be

justified by noting from Darcy’s equation that the effects of permeability κ are commensurate

with those of velocity u, ceteris paribus:

u = −κ
µ

∂p

∂x
(4.15)

One may therefore posit that variations of κ ≡ es affect MZL in the same way as velocity

does, or equivalently as Pe = ULx/DC ≡ w∗. This and the fact that we have seen that

the appropriate hydrodynamic scaling is based on w∗2 leads to the proposed heterogeneity

scaling of e2s commensurate with w∗2. The results of scaling the generalized MZL to account
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(a) (b)

Figure 4.10: Re-normalization of MZL to account for variance of permeability distribution
s; The flow parameters are: Pe = 2048, A = 4, q = 7, a) βC = 3, b) s = 0.1, different log
mobility ratios.

for the effect of the strength of heterogeneity as t̃s = t̃/e2s and ˜MZLs = ˜MZL/e2s are shown

in Figure 4.10. It is clear that the proposed scaling does allow to collapse the various curves

into a single unifying curve that allows to characterize MZL regardless of the values of

the heterogeneity variance. Figure 4.10b shows the re-normalized curves for different log-

viscosity ratios, and here again qualitative similarity between the different curves indicates

that it may be possible to also scale the effects of viscosity.

Viscosity Scaling

As mentioned before, the effect of log mobility ratio is to enhance the instabilities in all

regimes and it is different from the effect of other properties discussed so far which are

mainly related to the heterogeneity of the medium. The graphs of ˜MZLs for different values

of βC shown in Figure 4.10b can be reduced to a master curve by scaling only the length by

eβC/3.1. Hence the proposed scaling is as follows:

MZLmaster =
˜MZLs

e(βC/3.1)

tmaster = t̃s

(4.16)

This normalization was obtained through an estimation of the calculated factors for
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Figure 4.11: Fitting of ˜MZLs curves of different displacement scenarios with Pe = 2048,
A = 4, q = 7, s = 0.1, and for different mobility ratios as noted on the plot.

matching the curves and is not based on any actual physical arguments. Still, as can be seen

from Figure 4.11, it allowed to build a general unifying curve that characterizes the first flow

regimes for any values of the fluid properties or the medium heterogeneity. Note that despite

the superposition of the curves in the channeling and lateral dispersion regimes, earlier

transition from lateral dispersion to viscous fingering is observed for higher log mobility

ratios.

Before closing this section, the dependence of the previous conclusions on the type of

viscosity model will be examined. Different models are used in the literature [143, 144] but

for the sake of brevity, the discussion will be based on the quarter power mixing rule defined

as [144]: (
1

µ

)1/4

=

(
C1

µ1

)1/4

+

(
C2

µ2

)1/4

(4.17)

Generalized MZL plots generated with the quarter power mixing rule are shown in Figure 4.12

for viscosity ratio of M = 20 equivalent to βC = 3 in the exponential viscosity correlation

for q = 5 and q = 7. For comparison purposes, the corresponding ˜MZL curves for the

exponential viscosity model are also plotted. It can be seen that the variations of ˜MZL of
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Figure 4.12: Effect of viscosity model on MZL for an unstable flow with mobility ratio of
M = 20 corresponding to βC = 3, with Pe = 2048, A = 4, and s = 0.1 in a 5-layer and a
7-layer medium corresponding to w∗ = 102.4 and w∗ = 73.1 respectively.

both viscosity models are qualitatively similar and the different regimes discussed earlier can

be identified in both cases. This implies that the same conclusions can be drawn for both

models, and indicates that it may actually be valid for any viscosity model.

4.3.3 Time Dependent Dominance of Flow Regimes

The present study shows that flows in heterogeneous porous media go through the same flow

regimes at different heterogeneity length scales and with different flow properties. There-

fore, the dominance of any instability mechanism depends on the time window at which it is

considered, and this allows to explain and predict the flow behavior. In particular, the dom-

inance of heterogeneity induced instabilities in large length scale of heterogeneity reported

by [64, 145] is due to the fact that the effective Péclet number Pe/(q.A) in such cases is large

and as a result the flow will be mainly in the channeling regime on the generalized graph.

Furthermore, in the work of Tan and Homsy [69] followed by that of DeWit and Homsy [73],

the average slope of MZL between t = 200 and t = 400; L̇d, was used to characterize the

instability. Their simulations showed that L̇d has a maximum at a particular heterogeneity
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Figure 4.13: Average slope of MZL (L̇d) at different time windows for βC = 3, Pe = 2048,
A = 2 and s = 0.01

length scale, which was attributed to a resonance between viscous and heterogeneity driven

instabilities at commensurate length scales. The results of the present study and the identi-

fied general flow behavior, shows that such a maximum can be attributed to the fact that in

a heterogeneous medium, L̇d increases with q because of higher ∇f for larger q, hence the

initial increase. However for even larger q, the flow goes through lateral-dispersion therefore

leading to smaller average L̇d, for a fixed time period. Figure 4.13 depicts L̇d determined

between t = 200 and t = 400 versus the number of layers for the same conditions used by

[73] (βC = 3, Pe = 2048, A = 2). If the same displacement process is considered at later

times (e.g. between t = 600 and t = 1000 as shown in Figure 4.13), heterogeneity models

with larger length scales get the chance to go through lateral dispersion and one observes a

rapid decrease in the average slope of MZL. The slope of MZL increases with time in the

channeling regime, hence for media in which the flow is still in the channeling regime an

increase in L̇d is expected at t = 600 to t = 1000 time window. Due to these changes, it

is not surprising that the maximum L̇d shifts from q = 6 to smaller value of q as the time

window is changed from [t = 200, t = 400], to [t = 600, t = 1000].

87



www.manaraa.com

4.3.4 Breakthrough Time

Beside the mixing zone length, there are other parameters for quantifying the instability

that are easier to measure in field applications. One of these parameters is the breakthrough

time of the injected solvent at the production end. The breakthrough time tBT is defined

as the time when the leading edge of the mixing zone (c = 0.01) reaches the downstream

end of the porous medium with the total length Ltotal = tBT + xc=0.01@BT . In this section

the effect of the length scale of the permeability on the breakthrough time is analyzed and

applicability of the discussed generalization to such measurements is sought.

Figure 4.14a depicts the variation of the tBT with the number of layers q for the sets

(Pe, A) = (3072, 8), (2048, 4), (2048, 2), and (1024, 2). All results were obtained for βC = 3

and s = 0.1 and the point q = 0 corresponds to the homogeneous case. It is clear that the

variation of tBT with q is non-monotonic and actually exhibits a minimum and a maximum

for all considered cases. For wide channels (small but non-zero q), the flow is more unstable

since its is dominated by channeling where fingers develop early in particular in comparison

with the homogeneous case (q = 0) (c.f. Figure 4.3), hence a smaller breakthrough time.

This minimum breakthrough time corresponds to the largest number of layers for which the

flow remains in the channeling regime throughout the displacement process. For intermediate

values of q, the flow spends most of its traveling time in the lateral dispersion regime resulting

in longer breakthrough times, while for narrow channels (large q) fast transition to viscous

fingering causes early breakthrough of the injected fluid. Clearly there are two optimum

number of layers qoptM and qoptm that result in a maximum and minimum breakthrough

time. These optimum numbers of channels depend on the Péclet number and the cell aspect

ratio and seem to decrease with increasing A and decreasing Pe.

Following the scaling strategy adopted for characterizing the flow through MZL, the

tBT is plotted versus 1/w∗ and the results are shown in Figure 4.14b. The scaling clearly
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(a) (b)

Figure 4.14: Breakthrough time of the flow with βC = 3, s = 0.1, at the total dimensionless
length of Ltotal = 2700; a) breakthrough time versus number of layers for different Pe and
A, b) breakthrough time versus 1/w∗ = q.A/Pe.

allows to superpose all curves into a single one regardless of the combinations of Pe and

A, and to distinguish the extrema of tBT . In particular, it is found that the minimum of

the breakthrough time is reached for w∗ = w∗optm ≈ 250 while the maximum is attained for

w∗ = w∗optM ≈ 60. It can be concluded that for any displacement scenario (a given mobility

ratio and a diffusion rate) in a porous medium with determined permeability distribution, the

injection rate of the solvent can be adjusted to the distance between injection and production

locations to meet the optimum characteristics Pe
q.A

. This will ensure that the process remains

in the lateral dispersion regime for most of the time and promotes high sweep efficiency of

the process.

4.3.5 Effects of Dispersion

The previous scaling and flow analysis were based on constant isotropic diffusion in the flow.

Questions may however arise about the extent and validity of the present study for general

dispersive flows. In the case of homogeneous media, a number of numerical studies have

examined the effects of dispersion on the dynamics of viscous fingering [11, 69, 146, 13].

It was found that isotropic velocity-dependent dispersion has no significant effects on the
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finger structures and quantitative properties such as the mixing length, while anisotropy can

result in important differences in the finger structures. For heterogeneous media, the picture

becomes more complicated as a result of the competition between different mechanisms

[147]. The present study revealed that all flows dominated by the medium heterogeneity

(w∗ > w∗c−H) can be characterized by a single generalized curve. For such flows, it is

reasonable to expect that the effects of dispersion will be negligible in comparison with

those arising from the medium heterogeneity, and actually most relevant studies have ignored

dispersive effects [132, 133]. In order to ascertain this and check the generality of the proposed

scaling, simulations that account for dispersion were carried out for layered heterogenous

media using a velocity-dependent anisotropic dispersion model [148, 13]. Two dimensionless

groups are adopted; αD = aT
aL

representing the ratio of the strength of dispersion in the

transverse and longitudinal directions, and L = aLU
aLU+DC

measuring the relative strength of

the longitudinal dispersion [13].

A series of simulations were conducted to determine the effects of the two parameters

αD and L. It was found that for flows dominated by heterogeneity, velocity-dependent

anisotropic dispersion has very small effects on the finger structures and quantitative prop-

erties such as the mixing length. Actually, the only noticeable effects were in the fourth

regimes where some minor differences in the fingers’ shapes were observed though the over-

all structure and number of fingers were unaffected by dispersion.

Figure 4.15 depicts the variation of the MZL with time for different values of the disper-

sivity ratio αD and strength L and for A = 2, s = 0.1, q = 9,Pe = 512 and βC = 2. Clearly

the mixing zone length is not affected by dispersion over the wide range of the parameters

αD and L that have been explored. Results were also obtained for other values of A, s,Pe

and βC , and it was found that in all cases, the MZL does not change as a result of disper-

sion, at least in the first three regimes, while some differences may be observed during the
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(a) (b)

Figure 4.15: Effect of dispersion on MZL for s = 0.1, q = 9, βC = 2, Pe = 512, A = 2, for a)
L = 0.7 and different αD, b) αD = 0.5 and different L

last fingering regime. These results indicate that the proposed scaling actually extends to

dispersive flows and the previous conclusions are valid for general dispersive flows in layered

heterogeneous media.

4.4 Summary and Conclusion

The coupling between viscous fingering and heterogeneity induced instability has been in-

vestigated through a qualitative analysis of concentration contours as well as quantitative

characterizations through the mixing zone length (MZL) and the breakthrough time (tBT ).

The study considered a wide range of parameters such as the Péclet number, cell aspect

ratio, fluids mobility ratio and heterogeneity length scale and variance, and revealed that in

all the scenarios examined, flow displacements in layered heterogeneous media go through

similar flow regimes, though not necessarily at the same extent and with the same intensity.

Generalized curves have been obtained for different combinations of the mobility ratio and

variance of permeability distribution, by scaling time and MZL using characteristic time and

characteristic length based on the channels width. The slopes of the generalized curve have

been used to identify four regimes that the flow goes through; namely an initial diffusive
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regime followed by a channeling regime, then lateral dispersion and finally viscous fingering.

Such characterization of the flow regimes helps to explain dominance of viscous fingering or

channeling regimes reported in earlier studies for different length scales of permeability and

for different Péclet numbers . Furthermore, this scaling allowed identifying the transition

from flows where heterogeneous effects are dominant to those where these effects can be

neglected and the flow can be treated as homogeneous. Such a transition is governed by a

critical effective Péclet number based on the channels width; w∗c whose value depends on

the viscosity ratio and the strength of heterogeneity. Moreover, it is shown that for small

values of the effective Péclet number, the qualitative behavior and structure of the flows are

virtually identical to those of the homogeneous case. These results and scaling obtained in

the case of diffusive flows were found to be also valid when an anisotropic velocity-dependent

dispersion is considered. The scaling of MZL was further extended to account for the effects

of the mobility ratio and permeability variance and lead to a general master curve that can

be used to characterize quantitatively any flow in layered heterogeneous media. Such master

curves allow to superpose the MZL up to viscous fingering regime and allows to identify

clearly the start of this last regime.

The flow was also characterized in terms of the breakthrough time; tBT . It was found

that the variation of tBT with the number of layers q is non-monotonic and goes through a

minimum for small values of the number of layers q and a maximum for intermediate values.

Media with large number of layers lead to the same tBT as the homogeneous medium. Two

optimal values of the effective Péclet number; w∗opt that lead to a maximum and a minimum

value of tBT were determined. Here too, these optimal values are expected to depend on the

permeability variance and fluids viscosity ratios and the total length of the domain.

The present study has focused on the viscous fingering instability in isothermal miscible

displacements. However, it is expected that similar characterizations can be extended to
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other displacements such as in Rayleigh-Taylor (gravity driven) instability [141, 149], or

thermo-viscous fingering [130] and would help to explain observed phenomena like resonance

between the driving mechanisms of instability [149] or dominance of any of the mechanisms at

different length scales [141, 130]. Furthermore, similarity in the behavior of the mixing zone

for different heterogeneous media has been also reported for immiscible displacements [150]

and it is presumable that the present scaling approach can be also adopted to characterize

the flow behavior in immiscible flows.
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Chapter 5

Heat and Mass Transfer in Melting Porous Media:

Stable Miscible Displacements

1 Changes in the porosity and permeability of a porous medium due to melting are

modeled. A frozen phase, which initially fills a part of the porous medium, melts and gets

dissolved in the injected hot solvent. The amount of melted material, the rate of melting as

well as the profiles of temperature, porosity, and concentration are analyzed to understand

the nature of this naturally and industrially important phenomenon. Four reference scenarios

corresponding to instantaneous thermal equilibrium, no heat transfer to the frozen phase,

no-melting, and instantaneous melting conditions are solved analytically and the effects of

different parameters are discussed. Numerical simulation results show that the profiles of

the fluid temperature, porosity of the medium, and solvent concentration, form three fronts

moving at different rates. It is found that for heat transfer coefficients above a certain

value, the rate of melting is independent of this parameter and the system can be considered

to have reached instantaneous thermal equilibrium. Moreover, slow heat transfer in the

medium is shown to increase the rate of melting at long time periods by involving larger

areas in the melting process. Heterogeneous scenarios are also analyzed by introducing frozen

blocks of different geometries. The ability of the flow to bypass the frozen region involves

a new heat transfer mechanism identified as outer-boundary convection. The effects of the

1This chapter is the exact reproduction of the following journal article:
M. Sajjadi and J. Azaiez, ”Heat and Mass Transfer in Melting Porous Media: Stable Miscible Displacements”,
International Journal of Heat and Mass Transfer, vol. 88, pp. 926-944, 2015.
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geometry of the block along with the other parameters on the melting process are examined.

Furthermore a generalizing scheme is proposed to predict the melt production for different

block geometries and values of the saturation of the frozen phase.

5.1 Introduction

The structure of a porous medium may change dynamically by fluid flow, as a result of heat

and mass transfer. In this study, miscible displacement processes in media with changing

porosity due to melting are investigated. Such interactions can be encountered in a number

of natural phenomena such as the flow of magma, melting of sea ice or frozen soil as well

as in industrial processes such as secondary oil recovery or solute transport processes. In

these processes the frozen region is porous and has some permeability to the heated fluid.

Therefore the convection of heat through the frozen region is one of the main mechanisms

of heat transfer in such systems. In this regard this model is different from the classical

works studying the the melting of frozen porous media [91, 92, 93] or the melting cavities

[151, 152] in which conduction and natural convection are responsible for the heat transfer

to the boundaries of the frozen region.

As stated earlier, there are many fields in which melting in the porous medium is central

to the flow. These include the flow of magma melting the rocks and the ensuing change in

the permeability of the medium which has been the subject of numerous studies [98, 99, 100].

The porous medium in which the magma flows is considered to be deformable and heat and

mass transfer occur through the melting of the rocks and chemical reactions between the

components of the magma and the solid phase [99]. The heat transfer equations describing

these models are the closest to our model since they include the effect of the convection of

the hot fluid through the melting porous medium. The deformable porous medium of such

systems is replaced in our model by a melting solid phase and a non-deformable rock phase.
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Melting of ice due to the flow of water in partially frozen soil is another related application.

Studies on such systems started in the 1920s with the attempts to model heat and fluid

transport in frozen soil and to address frost related damage of roads in Scandinavia and North

America [153, 154, 155, 156]. Uneven ground displacements due to heaving pressure, loss of

mechanical strength of the soil due to thawing of the ice in the frozen regions, and changes in

unfrozen water level beneath the permafrost are examples of problems investigated through

such modelings. Despite some similarities between the present study and those discussing

freezing and thawing of frozen ground, the models and the relevant concepts are different.

The driving forces for the flow in frozen soils consist of gravity and the increase in the volume

of water upon freezing which pushes the moisture towards the colder regions and causes the

flow of heat and mass in the medium [153]. Furthermore, the models describing freezing and

thawing of the ground are configured mostly in one dimension along the gravity direction

[153, 154]. In the present study however, changes in the specific volume upon melting as

well as the effects of gravity are neglected while the flow is induced by the injection of the

solvent to the medium.

Changes in the medium porosity are also encountered in the field of oil recovery, which

is the main motivation of the present study. This pertains in particular to the hot solvent

flooding of preheated bitumen reservoirs where the inhabitant fluid is immobile and may

be regarded as frozen at the initial temperature. In the recovery of bitumen or heavy oil,

the co-injection of a solvent with a heating medium (mostly steam) has become popular

and many studies have been devoted in recent years to processes like solvent aided SAGD,

VAPEX and solvent assisted hot water flooding [157, 158, 128]. Melting of the bitumen

occupying some of the pore space of the medium changes the porosity available to the fluids

and in turn the dynamics of the flow. The formation of the melting zone through injection

of hot solvent to the bitumen reservoirs has not been studied before.
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Our objective of this work is to understand the effect of parameters such as the initial

porosity, the rate of heat transfer and the melting potential of the flowing fluid on the melting

rate and the development of the melting zone. Such a systematic study of the melting process

is beneficial in describing and predicting the trends of natural phenomena such as melting

of sea ice and thawing of soil. Also a better understanding of the trends of heat and solvent

transfer to the bitumen at different conditions can help enhance the efficiency and reduce

the environmental impacts of these industrial processes.

A detailed definition of the problem, along with the mathematical and numerical models

are presented in the next section. In the Results section, at first four reference scenarios

are defined for the melting process according to which different scenarios can be categorized.

Then a quantitative study is presented which aims at predicting the melting rate as a function

of the flow conditions and determining the conditions that lead to the maximum melting.

At last the melting mechanisms in heterogeneous media are discussed and a quantitative

analysis of the process is carried for different configurations of the frozen region.

5.2 Modeling

The problem is defined such that the porous medium is partially saturated with a frozen

material. The rest of the porous medium is filled with a fluid (e.g. the melt) that is fully

miscible with the melted form of the frozen phase. A hot fluid, fully miscible with the

inhabitant one, is injected in the medium to displace the inhabitant fluid and the melt. Due

to the heat of the injected fluid, the frozen material is melted and the pore space it initially

occupied becomes available to the flow. To model this system, it is assumed that three

phases are present in the medium, namely the rock or the porous medium, the frozen fluid

or the solid phase and the fluid or the flowing phase. The rock in this model is the part of

the solid matrix that remains unchanged during the whole displacement process and has a
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(a) initial stage (b) injection of heated fluid (c) melting of frozen material

Figure 5.1: Schematic of the phases present in the domain and the melting process: a) initial
stage with rock, frozen material, and melted fluid present; b) volume flooded by heated fluid;
c) melting of the remainders of frozen material.

homogeneous porosity distribution of φR. In other words, the void space per unit volume

available to the flow if no frozen material is present is φR. The porous medium is partially

saturated with the frozen material, or what we refer to as the solid phase, of volume per

unit volume of formation (φR−φ) , where φ = φ(x, y, t) is the porosity available to the fluid

flow in the presence of the frozen phase. The porosity φ(x, y, t) changes dynamically with

the variation of the saturation of the frozen material in the medium.

When the thermal front floods a region, it melts part of the frozen material in the area it

comes in contact with and increases its porosity and permeability. Initially the saturation of

the frozen material in the frozen medium is at its maximum value S0 providing a minimum

pore space for the flow, referred to as φmin. In any displacement scenario, the porosity can

vary between the initial porosity φmin and the rock porosity φR. Figure 5.1 shows a schematic

of the melting process. At the initial stage (Figure 5.1a) the medium has a porosity φmin and

all three phases are at thermal equilibrium at the melting temperature Tm. When the heated

fluid is injected into the medium (Figure 5.1b) there is a difference between the temperatures

of the frozen material and the flowing fluid which provides a source of heat for melting. As

a result of the gradual melting of the remainders of the frozen material in the medium, the

porosity increases and ultimately reaches that of the rock, φR.
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At the scale of the reservoir, the model is defined as a hot solvent with concentration C1

and temperature T1 being injected at a uniform rate U into a rectangular porous domain

of length Lx and width Ly and initial porosity φmin (see Figure 5.2). The injected fluid

displaces the inhabitant one, of concentration C2 and temperature Tm as well as the melted

material, and heats the medium. The concentration, temperature and porosity form advanc-

ing fronts that will be referred to as the solutal, thermal, and melting fronts, respectively.

The simplified profiles of these fronts are shown in Figure 5.2 at t0 and a later time.

The heat transfer inside the fluid takes place through convection and diffusion while

inside the rock heat is distributed through conduction. The heat transferred to the matrix

(consisting of the rock and the frozen phase) causes the thermal front in the fluid to lag behind

the solutal front. This lag depends on the share of heat capacity of the fluid compared to

that of the matrix [25]. It will be assumed here that the rock is in instantaneous thermal

equilibrium (ITE) with the fluid due to the large contact area between them [129], which

implies that the temperature distributions in both of these phases are the same. During the

melting process the frozen phase remains at the melting temperature. The ITE assumption

between the melting phase and the fluid requires that at each point, the fluid remains at the

melting temperature as long as the frozen material is present. Previous studies indicate that

the ITE assumption between the frozen material and the flowing phase makes the problem

inherently grid-size dependent. In this work, a transient thermal equilibrium between the

flowing and the frozen phases is considered. Hence the energy equation is formulated for

the temperature of the fluid-rock system separately from the saturation of the frozen phase

in the medium. Such handling of the energy equation allows for adjustment of the heat

transfer rate between ITE and transient thermal equilibrium at which the fluid can retain a

temperature higher than that of the melting phase even in the presence of some saturation

of the frozen material.
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Figure 5.2: Diagram of the modeled domain with the solvent concentration, fluid tempera-
ture, and porosity distribution profiles at t0 and t > t0

5.2.1 Main Model Equations

In this study we are interested in determining the distribution of temperature, solvent con-

centration, and porosity of the medium during the displacement process. Hence the governing

equations are mass and momentum conservation, advection-diffusion of concentration, and

conservation of energy:

∇.~uD = 0 (5.1)

∇P = −µ
κ
~uD (5.2)

∂(φC)

∂t
= −∇.(C~uD) +DC∇.(φ∇C) (5.3)

(ρfcpfφ+ ρRcR(1− φR))
∂T

∂t
=

∇.[(kfφ+ kR(1− φR))∇T ]− ρfcpf∇.(T~uD)

− h(T − Tm) (5.4)

(ρs∆hf + ρfcpf (T − Tm))
∂φ

∂t
= h(T − Tm) (5.5)

Equations 5.1 and 5.2 are the mass conservation and Darcy’s law, respectively. Equation
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5.3 describes the coupled variations of concentration and porosity with time, which includes

the effects of melting on the dilution of the solution. The energy conservation equation (which

reduces to heat conservation if no dissipation of kinetic energy is considered) is written in two

separate equations for the fluid-rock phase and the solid phase. The first one (i.e. Equation

5.4) describes the changes in temperature of the fluid-rock system as heat is brought to the

medium through conduction (the first term on the right) and convection (the second term

on the right) after a part of the heat is shared with the frozen phase (the last term on the

right hand side). The solid phase (i.e. the frozen fluid) is always at the melting temperature

and when melted, it is assumed that its temperature reaches instantaneously that of the

fluid (T ). Therefore in Equation 5.5 the heat transferred to the solid phase is used to melt

some parts of the frozen material and to raise the melted material’s temperature to that of

the flowing fluid.

In the above equations, ~uD is the Darcy velocity and φ as defined before is the porosity

of the medium available to fluid flow. The fluid pressure is denoted by p while µ is the

viscosity of the fluid which is a function of temperature and solvent concentration, and κ is

the permeability of the medium assumed to be a function of porosity. In Equation 5.3, C is

the volume concentration of the solvent varying between C1 at the injection and C2 at the

downstream boundaries while DC is the mass diffusion coefficient. The thermal equilibrium

assumption between the rock and the fluid phases requires one temperature T representing

both phases. In Equation 5.4, ρf and ρR are the densities of the fluid, and rock phases

respectively while cpf , cR, kf , and kR are the corresponding specific heat capacities and

thermal heat conductivities respectively. The heat transfer coefficient h and the difference

between the fluid-rock temperature and the melting temperature T − Tm determine the

amount of heat that goes towards melting. Finally, ρs in Equation 5.5 is the density of the

frozen material while ∆hf is the latent heat of melting.
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Additional assumptions beside ITE between the fluid and the rock and the homogeneity

of the rock, were made for adopting these equations. They include assumptions that the

material and the medium are continuous at the scale under consideration, that the flows are

laminar and incompressible and that the density of each phase is independent of temperature

and concentration. Also in the mass conservation equation, it is assumed that the pore

volume that the solid phase occupies is the same as the volume it fills after it melts which

neglects any changes in the density between the solid and the fluid phases. Furthermore, the

solvent concentration is assumed to affect neither the melting temperature nor the latent

heat of melting. The inertia and boundary effects that are shown to be important in high

permeability media and for small mobility ratios [159, 160, 19] are also neglected in this

work.

5.2.2 Constitutive Correlations

In what follows, expressions and correlations of some of the physical parameters are discussed.

Heat Transfer Coefficient Determination of the value of the heat transfer coefficient h

is critical in this model. For a porous bed of particles, Dixon and Cresswell [161] proposed

the following correlation:

h = s̄h∗ (5.6)

where s̄ is the surface area per unit volume of the porous medium (specific surface area)

whose definition will be given shortly. For h∗, Alazmi and Vafai proposed the following

expression [162]:

h∗ =
kf
dp

[
2 + Pr1/3Re0.6

p

]
(5.7)
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According to the data provided in Tables 5.1 and 5.2 which correspond to the displace-

ment of bitumen in Cold Lake (Alberta) and to the melting of ice, the product in Equation

5.7, Pr1/3Re0.6
p = 2e − 5 to 1e − 2 is negligible compared to the constant 2, and h∗ can be

simplified to h∗ = 2
kf
dp

.

Permeability For the variation of the permeability with the porosity κ(φ), different

forms of Kozeny’s empirical correlation have been used extensively in the literature. In

particular, Emmanuel and Berkowitz [103] used the form:

κ = cK
φ3

s̄2
(5.8)

where cK = 0.5 is Kozeny’s constant. Assuming that the porous medium consists of spherical

grains, the specific surface area is determined through:

s̄ = s̄0

(
1− φ
1− φ0

)2/3

(5.9)

where the reference specific surface area s̄0 is defined as s̄0 = 6 (1−φ0)
dp

[161]. Emmanuel

and Berkowitz showed that although the value of the permeability defined by Equation 5.8

depends on the choice of s̄ as a function of porosity, the trend of variation of the permeability

with porosity remains the same regardless of this choice [103]. An alternative correlation for

κ(φ) was proposed by Alazmi and Vafai [162] for media with variation of porosity near the

impermeable boundaries:

κ =
φ3d2

p

150(1− φ)
(5.10)

Kozeney’s correlation as shown in Equation 5.8 results in permeability values twice as much

as those determined through Equation 5.10 in which the porosity is expected to decrease at

the impermeable boundaries. However the trends for the variation of κ with φ are similar for

both methods, and actually the substitution of s̄ in Equation 5.8 confirms the proportionality
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Table 5.1: List of values for the thermal properties of the fluid, rock and solid phases, and
the flow in formation corresponding to the displacement of bitumen in Cold Lake formation
in northern Alberta, Canada.

Parameter Value Units

Fluid (Bitumen at 100 deg C ) [163]

Specific Heat Capacity cpf = 2.15 KJ/KgK

Thermal Conductivity kf = 0.10 W/mK

Density ρf = 960 Kg/m3

Solid (Bitumen at 15 deg C ) [163]

Specific Heat Capacity cs = 1.8 KJ/KgK

Density ρs = 1000 Kg/m3

Latent Heat of Melting ∆hf ≈ 72 KJ/Kg

Rock [163]

Specific Heat Capacity cR = 0.7 KJ/KgK

Thermal Conductivity kR = 1− 4 W/mK

Density ρR = 2650 Kg/m3

Injection Velocity U = 2e− 6 m/s

Grain Size [163] dp = 2 µm

Reference Porosity φ0 = 0.15

Viscosity at Inlet (at 120 deg C) [164] µ1 = 0.02 Pa.s

Viscosity at outlet (at 50 deg C) [164] µ2 = 1.0 Pa.s
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Table 5.2: List of values for the the thermal properties of the fluid, rock, and solid phases
corresponding to flow of water in frozen ground.

Parameter Value Units

Fluid (Water at 0 deg C )

Specific Heat Capacity cpf = 4.2 KJ/KgK

Thermal Conductivity [165] kf = 0.56 W/mK

Density [166] ρf = 998 Kg/m3

Solid (Ice at −2 deg C ) [163]

Latent Heat of Melting ∆hf = 330 KJ/Kg

Density ρs = 920 Kg/m3

Viscosity at Inlet (at 20 deg C) µ1 = 1.0 mPa.s

Viscosity at outlet (at 0 deg C) µ2 = 1.8 mPa.s

of the results. In the present study the domain of interest is assumed to be a section of a

larger porous medium in which the displacement process is taking place. Therefore periodic

boundary conditions are applied on the transverse boundaries and it is assumed that the

flow is not affected by any impermeability close to the boundaries of the domain. Hence the

permeability correlation in Equation5.8 is adopted.

Fluid-Frozen Phase Surface Area Equation 5.9 is for the specific surface area in a porous

medium contacted by the fluid, which decreases to zero as the porosity reaches φ = 1. To

determine the heat transfer coefficient, we are interested in the contact area between the

fluid and the frozen (solid) phase s̄s which is expected to be zero when the porosity reaches

φR. Hence, to determine the specific surface area of the solid phase, some modifications are
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made in equation 5.9:

s̄s = s̄s,0

(
φR − φ
φR − φ0

)2/3

(5.11)

s̄s,0 = 6
(φR − φ0)

dp
(5.12)

This modification is based on the assumption that the specific surface area of the frozen

particles in contact with the fluid decreases with the melting of the frozen material. The

maximum contact between the fluid and the frozen material occurs when the saturation of

the frozen material is φR − φmin and it decays to zero as the porosity reaches that of the

rock. Although this correlation can affect the rate of heat transfer to the frozen regions and

the rate of melting, its effect is limited to slow melting scenarios. As will be shown later in

the results section, the heat transfer coefficient in natural formations is so large that they

meet the instantaneous thermal equilibrium condition. The rate of melting in such scenarios

is independent of the heat transfer coefficient and of the correlation chosen for the specific

surface area-porosity.

Viscosity For the dependence of the viscosity on temperature and solvent concentration,

an exponential correlation is adopted [22]. This correlation describes closely the ”quarter

power mixing rule”, that is widely used in the petroleum industry to describe the viscosity

of aqueous and non associating mixtures [136, 137, 16]:

µ = µ1exp

(
βC

(
C1 − C
C1 − C2

)
+ βT

(
T1 − T
T1 − Tm

))
(5.13)

According to this correlation, the viscosity ratio, also regarded as the mobility ratio for

miscible displacements, is defined as the viscosity of the inhabitant fluid over that of the

injected fluid; i.e. µ2/µ1 = exp(βC + βT ). Therefore βC and βT are referred to as the solutal

and thermal log-mobility ratios, respectively.
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5.2.3 Initial and Boundary Conditions

As shown in Figure 5.2, the domain of interest is a rectangle of length Lx and width Ly.

Initially the system is considered to be at the melting temperature Tm at a minimum poros-

ity φmin and solvent concentration C2, except for a small band of thickness x0 from the

injection boundary where the domain is assumed to be flooded with the hot solvent and has

a temperature T1, a porosity φR and a solvent concentration C1. The initial conditions are

formulated as follows:

~uD(x, y, t0) = U i (5.14)

T (x, y, t0) =
(T1 − Tm)

2
erfc(

x− x0

2
√
DT t0

) + Tm (5.15)

C(x, y, t0) =
C1 − C2

2
erfc(

x− x0

2
√
DCt0

) + C2 (5.16)

φ(x, y, t0) =
(1− φmin)

2
erfc(

x− x0

2
√
DT t0

) + φmin (5.17)

In the above equations DT is the diffusion rate of heat which is defined by the effective

thermal conductivity and specific heat capacity of the rock-fluid system (Equation 5.28).

During the displacement process, the hot solvent with uniform temperature and concen-

tration T1 and C1 is injected at a uniform and constant Darcy velocity U from the left side of

the domain (upstream boundary) and the temperature and concentration at the downstream

boundary remain as Tm and C2. The porosity at the injection boundary is φR while it is φmin

at the downstream boundary. Transverse to the flow direction, periodic boundary conditions
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are adopted.

(C, T )(0, y, t) = (C1, T1)

(C, T )(Lx, y, t) = (C2, Tm)

∂

∂x
(C, T )(0, y, t) =

∂

∂x
(C, T )(Lx, y, t) = (0, 0)

(C, T )(x, 0, t) = (C, T )(x, Ly, t)

∂

∂y
(C, T )(x, 0, t) =

∂

∂y
(C, T )(x, Ly, t)

(φ, ~uD)(0, y, t) = (φR, U i)

(φ, ~uD)(x, 0, t) = (φ, ~uD)(x, Ly, t)

(5.18)

5.2.4 Dimensionless Equations

The equations are made dimensionless using a diffusive scaling:

c∗ =
C − C2

C1 − C2

θ∗ =
T − Tm
T1 − Tm

(u∗, v∗) =
(uD, vD)/φ

U/φR

(x∗, y∗) =
x, y

DCφR/U
t∗ =

t

DCφ2
R/U

2
φ∗ =

φ

φR

p∗ =
p

φRµ1DC/κR
µ∗ =

µ

µ1

κ∗ =
κ

κR

(5.19)

The scaling for the porosity is used so that the model is independent of the rock porosity.

The resulting dimensionless equations are:
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∇.(φ∗u∗) = 0 (5.20)

∇p∗ = −µ
∗

κ∗
φ∗u∗ (5.21)

∂(φc∗)

∂t∗
= −φ∗u∗.∇c∗ +∇.(φ∗∇c∗) (5.22)

∂θ∗

∂t∗
=

1

(1− λ(1− φ∗))
[Le∇. ((1− (1− φ∗)krel)∇θ∗)

− λφ∗u∗∇.θ∗ − Lekrel

Pe2
p

(
12(1− φ∗0)1/3(1− φ∗)2/3

)
θ∗] (5.23)

∂φ∗

∂t∗
=

1
ρrel
Ste′

+ θ∗

[
Lekrel

λPe2
p

(
12(1− φ∗0)1/3(1− φ∗)2/3

)
θ∗

]
(5.24)

where:

λ =
ρfcpfφR

(ρfcpfφR + ρRcR(1− φR)
(5.25)

ρrel =
ρs
ρf

(5.26)

Le =
DT

DC

(5.27)

DT =
kfφR + kR(1− φR)

ρfcpfφR + ρRcR(1− φR))
(5.28)

krel =
kfφR

kR(1− φR) + kfφR
(5.29)

In the above equations, the Lewis number Le = DT
DC

is the ratio of the diffusion rate of heat

over that of the concentration, the Stefan number Ste′ =
cpf (T1−Tm)

∆hf
represents the relative

internal energy of the fluid to that of melting (or melting potential of the fluid), while the

pore scale Péclet number Pep = Udp
DC

= Pe dp
Lx

defined and used in the calculation of the heat

transfer coefficient, corresponds to the dimensionless grain diameter. Moreover, the Péclet

number Pe = ULx
DC

defining the relative importance of convection to diffusion appears as the

dimensionless length of the domain, and the dimensionless width of the domain is defined as

L∗y = Pe/A where A = Lx/Ly is the aspect ratio. Finally, the rate of convective heat transfer
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between the fluid and the solid phase in Equation 5.24 is defined as HT =
12Lekrel(1− φ∗0)1/3

Pe2(dP/Lx)2

and in all that follows, we set Ste = Ste′/ρrel. The pore scale Péclet number is integrated in

HT and when studying the effects of different parameters HT will be adjusted independently

from the main Pe which is fixed throughout the chapter.

Using the newly defined dimensionless groups and dropping the asterisks from the di-

mensionless quantities Equations 5.20 to 5.24 simplify to:

∇.(φu) = 0 (5.30)

∇p = −µ
κ
φu (5.31)

∂(φc)

∂t
= −φu.∇c+∇.(φ∇c) (5.32)

∂θ

∂t
=

1

(1− λ(1− φ))
[Le∇. ((1− (1− φ)krel)∇θ)

− λφu∇.θ −HT (1− φ)2/3θ] (5.33)

∂φ

∂t
=

1

1 + Steθ

SteHT

λ
(1− φ)2/3θ (5.34)

The boundary and initial conditions are also formulated in dimensionless form. A stream

function-vorticity formulation ω = −∇2ψ is used to recast the momentum and mass conser-

vation equations as follows:

∇×∇p = −(∇µ
κ
× φu +

µ

κ
∇× φu)

0 = −κ
µ
∇µ
κ
× φu− ω

ω = −∇(ln(µ)− ln(κ))× φu

Using the dimensionless form of Equation 5.13 which results in ∇ln(µ) = −βC∇c−βT∇θ

and setting f = ln(κ), the expression of vorticity becomes:

ω = −(βC∇c+ βT∇θ +∇f).∇ψ (5.35)
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The velocity field can be obtained by extracting the stream function from the vortic-

ity distribution. It should be noted that the vorticity is the curl of velocity, and therefore

the stream function obtained from the vorticity through ω = −∇2ψ only retrieves the fluc-

tuations of the velocity and not the constant part. Therefore, the total velocity vector is

obtained by adding the constant and uniform injection velocity to the one obtained from the

stream function.

u = (u, v) =
1

φ
(
∂ψ

∂y
+ 1,−∂ψ

∂x
)

5.3 Numerical Method

The problem of the melting medium formulated by Equations 5.30 to 5.34 is highly nonlinear

and stiff. The main source of stiffness arises from the heat transfer to the frozen phase

taking place at a much faster rate than the diffusion and convection phenomena. The fast

heat transfer between the fluid and the melting medium leads to sudden changes in the

porosity φ and the temperature θ and results in sharp gradients at the corresponding fronts.

Therefore choosing the appropriate numerical method for solving Equations 5.30 to5.34 is of

utmost importance.

Spatial Derivatives For the differentiation in space, spectral and finite difference meth-

ods have been considered. The highly accurate spectral methods are powerful and fast tools

but require periodic boundary conditions. For the velocity, periodic boundary conditions in

the −y direction and zero fluctuations at the upstream and downstream boundaries allow

to implement such conditions in both flow directions. Furthermore for the other variables,

to implement periodic boundary conditions, the concentration, temperature, and porosity

were split as the sum of the initial base state profiles (defined in Equations 5.14 - 5.17) and
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the remaining terms that have non-zero values around the advancing fronts but decay to

zero towards the boundaries. Unfortunately a number of limitations have been encountered

with the implementation of the spectral methods. First, the fact that spectral methods are

defined for uniform grid distributions had limited the accuracy for this problem with rapid

variations over a small region of the domain. Moreover, this model involves many nonlinear

terms whose calculations require numerous direct and inverse transformations that turned

out to be very computationally costly. For these reasons, the finite difference method with

non-uniform grid distribution which adapts itself with the melting front’s profile has been

adopted. Hence the grid clusters are refined when the melting front has a sharp gradient and

are distributed widely if the melting front is spread over the domain. The grids in the −y

direction are distributed evenly across the flow domain and the derivatives are defined using

second-order central difference formula. The derivatives in the x direction are determined

using a second-order accurate finite difference discretization on a non-uniform grid [167].

Temporal Discretization For time stepping, a number of algorithms have been explored

and tested. In general, fully implicit schemes are very difficult to implement due to the

high degree of nonlinearity of the equations. Therefore linear multi-step methods were

adopted and in particular, a Runge-Kutta method as well as a semi implicit predictor-

corrector method were tested and their efficiency compared in terms of the computational

time, stability and accuracy. A fourth order Runge-Kutta (RK4) method and a second-order

Adams-Bashforth - Adams-Moulton predictor-corrector method were used for this compar-

ison. In the AB-AM predictor-corrector method the first step is based on the second order

explicit Adams-Bashforth method (AB) with a small region of stability. The second step,

which can be repeated for better convergence and stability, is the implicit Adams-Moulton

(AM) algorithm. Due to its implicit nature, Adams-Moulton method has a larger region of

numerical stability compared to the other schemes discussed here but its combination with
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the predictor reduces the region of stability for the predictor-corrector scheme [168].

The Runge-Kutta methods of a given order might have different coefficients but all have

the same stability properties [169]. Based on the A-stability graphs, RK4 has a larger

stability region than the second order AB-AM method. However the number of evaluation

steps in the predictor-corrector method has a significant effect on its stability and therefore it

is difficult to say whether an iterative AB-AM method (P (EC)mE) is less unstable than RK4

or not. In order to compare the efficiency of these numerical methods in solving the proposed

model, a large number of numerical simulations were performed for different scenarios and

the computational time and the results were compared. In one of the performed tests, for

example, the parameters were set as φmin = 0.95, βC = 1, βT = 1, Pe = 256, A = 2, λ = 0.8

and Le = 1. The heat exchange rate and the melting potential were set to HT = 0.01 and

Ste = 1.2 respectively. A mesh of 512 × 512 with initial grid size of dx = 0.11 to 1.0 and

dy = 0.25 and a time step size of dt = 1e − 4 was used for this case. At a run time of 80

hours the RK4 method reached t = 24 while AB-AM method reached the end time of t = 50

at 31 hours run time. For all the compared scenarios the run time of the AB-AM method

was smaller than the RK4 method. Comparisons of the results showed perfect agreement

between the two methods and therefore the second order AB-AM method was chosen. In

the next section, the validation and convergence of the numerical code are discussed.

5.3.1 Validation

Before proceeding with the discussion of the results, the validation and convergence of the

numerical code are presented. First, the prediction of the code have been compared with

those obtained from analytical solutions of limiting cases that will be discussed in further

details in the next section. The results from the exact analytical and numerical solutions are

shown in Figure 5.3 for cases of very slow heat transfer (HT → 0, HT = 1e−7), instantaneous
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melting (Ste → ∞, Ste = 100) and no melting (Ste → 0, Ste = 1e − 5). There are clearly

excellent agreements between the two solutions which indicate that the numerical code is

accurate and has converged, at least in those limits.

Furthermore we have also attempted to validate the code for unstable scenarios, which

constitutes a more stringent test. In the literature, modeling of instabilities in frozen media

are limited and there are no similar studies analyzing the development of fingers at the

melting front. Therefore, for validating the code, a non-melting scenario with φmin = 1 has

been considered. The simulation results for βC = 2, βT = 1, λ = 1, Pe = 2000, Le = 1 and

Lx/Ly = 2 that correspond to thermo-viscous fingering in homogeneous porous media have

been matched with simulation results of [130]. It was found that there is very good agreement

between the number, size and growth rate of the developed fingers in both methods.

Finally, the sensitivity of the results to the time step size and the grid size has been

confirmed by changing the time step size from dt = 1e − 3 to 1e − 4 and by comparing

the results for stable scenarios with and without mesh refinement. The results do not show

any dependence on dt in the ranges that do not result in numerical instability. The mesh

refinement was however found to affect the results for fast melting scenarios as sharp gradients

were smoothed by large grid size of regular meshing. Therefore the melting front has a faster

advancement (by around 1% for HT = 1) when mesh refinement is applied.

5.4 Results and Discussion

The proposed model for the melting porous medium with forced convection through the

medium involves a large number of parameters that are expected to affect the process, such

as βC , βT , φmin, λ, Le, Pe, krel, HT , and Ste. Due to the large number of possible values

and combinations, it is impractical to analyze the effects of all these parameters. Therefore

the analysis will be limited to some parameters that are expected to have a more significant
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influence on the advancement and growth of the thermal, melting, and solutal fronts. In

particular the study will deal only with stable scenarios and therefore βC = βT = 0. For

stable flows with uniform distribution of the frozen material, the effect of changing the Péclet

number Pe is limited to adjusting the dimensionless length of the medium. Therefore, unless

stated otherwise the Péclet number is fixed as Pe = 1000. The thermal lag coefficient λ is

very important in systems involving the coupling between mass and heat transfer in porous

media. This parameter defines the rate of advancement of the thermal front and determines

the share of heat that is required to increase the temperature of the rocks to that of the

fluid. The effect of λ on thermo-viscous fingering has been extensively studied in previous

studies [22, 130], and will be fixed here as λ = 0.8. The thermal conductivity of a fluid is

in general smaller than that of a solid. As a result, the parameter krel which represents the

relative thermal conductivity of the fluid to that of the fluid-rock system has generally a

very small value (between 0.01 to 0.2 for the range of parameters given in Tables 5.1 and

5.2). This implies that the term (1− φ)krel in Equation 5.33 is negligible with respect to 1.

Therefore variations of krel are not expected to have significant impact on the results, and

this parameter is fixed as krel = 0.03.

In the following sections, the effects of HT , Ste, φmin, and Le, are investigated for stable

scenarios with uniform distribution of the frozen material across the flow domain. In addition,

the effect of non-uniformity in the initial porosity distribution is examined by defining the

initial porosity such that the frozen region forms a block within the domain’s boundaries. The

flow is still kept viscously stable for these scenarios. In the first part of the study dealing with

uniform porosity distribution transverse to the flow, all derivatives with respect to y vanish

and the model and consequently the results can be presented in a single spatial dimension

(−x). In this part, results are presented in 1D graphs starting from a maximum value of 1

at the injection boundary and decreasing to the minimum values of 0 for temperature and
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(a) HT = 0, HT0 (b) HT =∞, ITE

(c) Ste = 0, Non-melting (d) Ste =∞, Instantaneous Melting

Figure 5.3: The average Concentration, Temperature, and porosity profiles for reference
scenarios with φmin = 0.7 and Le = 1: a) no heat transfer to melting (HT0) scenario
(HT = 1e − 7, Ste = 0.54), b) instantaneous thermal equilibrium scenario (HT = 100,
Ste = 0.54), c) non-melting scenario (HT = 10, Ste = 1e− 5) and d) instantaneous melting
scenario (HT = 10, Ste = 100) with numerical solutions and the corresponding approxima-
tions.

concentration and φmin for porosity. In the second part of the results, where frozen blocks

are defined, the results are presented in 2D contours of the dimensionless variables.

5.4.1 Reference Scenarios

Before analyzing the effects of the different parameters, some reference cases in which HT

and Ste adopt asymptotically large or small values are examined first. These limiting cases

will help categorize different scenarios of the flow, infer some of the physics of the system

and formulate the general observed trends. In addition and more importantly, the equations

for these reference scenarios can be simplified and in some cases be solved analytically. This
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has helped validating the numerical code as well as predicting the location and profile of the

three fronts evolving in the system.

The first reference scenario is the HT0 scenario in which the heat transfer coefficient

between the fluid and the frozen phase is very small (i.e. HT ≈ 0). Such a situation can be

expected in displacement processes with extremely large injection rates, or in porous media

with small contact areas between the fluid and the frozen phase, that do not allow effective

heat transfer to the frozen phase. Also if the thermal conductivity of the fluid is very small,

not a lot of heat is transferred to the frozen phase and this can result in a HT0 situation. HT

determines the priority of melting over the change of temperature at each point. As a result

of a weak heat transfer, the frozen material does not melt and most of the heat brought to

the medium is spent on changing the fluid-rock temperature. Thus, it is expected that the

injected fluid will not affect the initial porosity distribution of the medium (i.e. ∂φ
∂t

= 0) and

the equations may be simplified to:

∇.(φu) = 0

~∇p = −µ
κ

i

∂c

∂t
= −1

φ

∂c

∂x
+
∇φ
φ
.∇c+

∂2c

∂x2

∂θ

∂t
=

1

(1− λ(1− φ))
[Le∇. ((1− (1− φ)krel)∇θ)− λ

∂θ

∂x
]

where φ retains its initial profile defined in Equation 5.17. In that equation, the initial

porosity varies from 1 to φmin in a narrow region and remains unaffected outside this region.

When both concentration and thermal fronts are well behind or ahead of the porosity drop

region, the terms ∇φ.∇c and ∇φ.∇θ vanish everywhere. Therefore, the concentration and

temperature profiles can be expressed as:
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c =
1

2
erfc

(
x− t/φ

2
√
t

)
(5.36)

θ =
1

2
erfc

(
x− λt̂

2
√

L̂et̂

)
(5.37)

where

t̂ =
t

(1− λ(1− φ))
(5.38)

L̂e = Le(1− (1− φ)krel) (5.39)

In the above equations, t̂ and L̂e are the scaled time and the effective Le that depend on

the porosity of the medium. If φ = 1 then t̂ = t and L̂e = Le.

The results of the numerical simulations and the analytical solutions for HT0 scenario

are shown in Figure 5.3a. As expected, the porosity does not change throughout the dis-

placement process and the concentration and the temperature profiles adopt error-function

forms described by Equations 5.36 and 5.37.

The second reference scenario corresponds to an asymptotically large heat transfer co-

efficient; HT ≈ ∞ which results in instantaneous thermal equilibrium (ITE) between the

injected fluid and the frozen material. Opposite to the HT0 case, a very slow flow of hot

fluid in the medium, a large contact area between the two phases or a considerably large

thermal conductivity for the fluid result in an efficient transfer of heat to the frozen phase and

lead to ITE. In this limit, melting is the dominant effect compared to temperature increase,

and the fluid looses all its heat to the frozen phase and reaches the melting temperature

when flowing through the frozen region. Therefore, as shown in Figure 5.3b, there is a sharp

change in the temperature at the melting front. This indicates that in such limits, one must

expect challenges related to numerical stability as a result of the sensitivity of the solution
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to the grid and time-step sizes, and the simulations may have to be conducted for moderate

HT . However, although moderate values may not a-priori be physically justified, as we shall

see next, the physics of the flow are not substantially changed once HT exceeds a critical

value.

This reference scenario does not result in any simplification of the problem, and the

fronts’ profiles still need to be determined numerically. However, the general form of the

temperature, porosity, and concentration profiles can actually be approximated. As men-

tioned before, the temperature and porosity fronts experience sharp gradients at the melting

front. Aside from the sudden drop at the melting front and when the concentration front is

well past the melting region, the change in concentration is governed by the usual convection-

diffusion process with no changes in porosity on its way. Hence, a simplified model describing

the concentration profile ahead of the melting front will have the form:

c̄φmin =
1

2
α× erfc

(
x− t/φmin√

t/φmin

)
(5.40)

The coefficient α is expected to depend on the rate of melting and hence a general value

cannot be a-priori determined. In the present study, α was determined from the results

of the simulations using the value of the concentration right after the drop at the melting

front. The agreement between the concentration profile in Figure 5.3b and the analytical

description in Equation 5.40 confirms that the concentration profile past the melting front

is not affected by the melting process and follows an error-function type profile.

The next two reference scenarios are defined based on extreme values of the Stefan num-

ber; the first being Ste = 0. As mentioned before Ste is the potential of the fluid to melt

the frozen phase. In other words, for any given amount of heat, it determines how fast the

frozen material gets melted. A very small sensible heat content of the injected fluid with

respect to the latent heat of the frozen phase can result in a small Ste and a slow melting

rate. An infinitely small Ste results in non-melting conditions, but unlike the HT0 scenario
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for such a system depending on HT some share of heat is devoted to melting the frozen

material. As illustrated in Figure 5.3c, a large heat transfer rate causes the thermal front to

get stuck behind the melting (non-melting) front, and although the concentration and the

porosity profiles are similar for HT0 and non-melting scenarios, their temperature profiles

are different. Like in the HT0 scenario, the analytical description of the concentration profile

matches very well the simulations’ results.

In the last reference scenario of instantaneous melting with Ste ≈ ∞, the frozen phase

shows no resistance against the flow of heat in the medium and all the melting takes place

immediately at the first contact of the hot fluid at the tip of the thermal front. Hence the

temperature profile does not experience any changes in porosity as it hardly meets the frozen

material. Therefore the profile of the thermal front follows a simple error-function form:

θ =
1

2
erfc

(
x− λt
2
√

Le.t

)
(5.41)

The above expression is equal to Equation 5.37 for φ = 1. Since the concentration

distribution depends on the rate of melting and therefore is correlated with the temperature

and porosity distributions, numerical solution of the equations is required to determine the

concentration profile. For the porosity distribution, one can expect the melting front to

lead to a sharp porosity drop at the end point of the thermal front. Ideally instantaneous

melting should be independent of the value of HT , nevertheless for this numerical analysis

(see Figure 5.3d) since Ste adopts a large but finite value, the value of HT = 10 is used to

ensure instantaneous melting not being delayed by the heat transfer coefficient.

Although an extremely large heat transfer coefficient HT ≈ ∞ may be expected to result

in instantaneous melting, as will be seen in the following section, for high HT values the

melting rate is mainly controlled by the melting potential of the injected fluid (Ste). Hence,

rapid heat transfer between the fluid and the frozen phase does not guarantee instantaneous
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melting condition to be met.

In the following section the trends of changes in the profiles are discussed as the heat

transfer coefficient is varied between the HT0 and the ITE scenarios.

5.4.2 Effect of HT

The heat transfer coefficient represents the amount of heat that can be made available to melt

the frozen phase. Figure 5.4 depicts the temperature, porosity, and concentration profiles at

t = 500 for different values of the heat transfer coefficient, and for Ste = 0.5 and φmin = 0.7.

The effects on the temperature, porosity, and concentration are discussed next.

Temperature In the case HT = 100, melting starts shortly after the thermal front reaches

the low porosity region, and most of the heat that comes to the melting front goes to the

frozen material. As a result, the temperature decreases rapidly to the melting temperature

(θm = 0). There are no noticeable changes in the temperature profile as HT is reduced to 1.

Further reduction of HT results in slower melting of the frozen material. As a consequence,

some part of the heat is carried to regions further downstream of the melting front and melts

some of the frozen material in those regions. This is well illustrated by the temperature

profiles for HT = 0.01 and 0.001 which extend further downstream than those corresponding

to larger HT . For HT = 1e− 7 (HT0) the temperature profile can be described by the error

function presented in Equation 5.37.

Porosity Due to the sharp changes in the temperature at the melting front for 1 ≤ HT ≤

100, the porosity shows a step-function like profile that was found to shift forward with time.

Note that here too, the porosity for HT = 100 and HT = 1 are essentially indistinguishable.

The diffusion of heat in the medium and the extended profile of temperature for intermediate

values; 0.001 ≤ HT ≤ 0.1 result in the advancement of the end of the melting front along

side the thermal front. However, the slow rate of melting due to a smaller share of heat
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available for melting causes the beginning of the melting front to advance slowly. Hence,

the melting front is extended in the medium for the small heat transfer coefficients. When

HT = 1e− 7 the change in porosity from its initial configuration is negligible.

Concentration For the largest examined heat transfer coefficient (HT = 100), as expected

the concentration profile shows a sudden drop due to the melting and dilution of the solvent

with the melted fluid. Beyond the melting front, the solvent enters a medium with a porosity

φmin smaller than that in the upstream regions with φ = 1. Thus, the flow velocity increases

and the concentration front advances much more rapidly. Since for this large HT all the

melting takes place at a narrow region of the medium, there are no interactions between

the flow and the medium ahead of the melting front and the concentration adopts an error-

function like profile. Like what was observed in the temperature and porosity profiles, the

reduction of HT from 100 to 1 leads to virtually no changes in the concentration profiles. A

non-monotonic concentration profile that extends along the melting front is observed in the

intermediate range; 0.001 ≤ HT ≤ 0.01. This non-monotonic behavior is attributed to the

fact that the rate of melting increases with time, which we shall further discuss next when

looking at the time trends of the process. So the melting starts with a slow rate that then

ramps up in time. Hence, the concentration shows a small drop at the melting front at early

times. As the solutal front advances faster than the thermal front, those leading parts of

the fluid that experience a small drop in concentration move ahead and do not get affected

by the melting front any more. Later in the process, the following fluid experiences more

decrease in concentration at the melting front as more rapid melting takes place, leading to

a non-monotonic concentration distribution. By further reducing HT to smaller values (i.e.

HT = 1e− 7), the share of heat that can lead to melting becomes so small that the profiles

follow those of a HT0 scenario, and the concentration profile can be adequately described

by Equation 5.36.
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(a) Temperature (b) Porosity (c) Concentration

Figure 5.4: Effect of HT on temperature, porosity, and concentration profiles for Le = 1,
φmin = 0.7, Ste = 0.5, and HT = 1e− 7 to 100 at t = 500.

One of the major conclusions that can be made based on the graphs of Figure 5.4 is

that, for the adopted values of the parameters, the temperature, porosity, and concentration

profiles do not show significant changes with an increase of the heat transfer coefficient

beyond HT = 1. This may be attributed to the fact that the heat brought to the medium by

the injected fluid has a limited amount, and even though the heat transfer coefficient may

be increased, no larger amount of heat can be provided by the fluid. In order for the fluid to

provide more heat to the medium either the fluid’s melting potential (i.e. Ste) or the diffusion

rate of heat into the fluid-rock system (i.e. Le) has to increase. The effect of changing these

parameters on the melting process will be presented and discussed in the following sections.

Hence fixing all the other parameters, there is a critical heat exchange rate for each scenario

above which any increase in the heat transfer coefficient does not increase the rate of melting

or affect the flow. For the parameters’ values of Figure 5.4 it is reasonable to expect that

for even larger heat transfer coefficients (as large as required for ITE conditions) the results

will be close to those for HT = 1. Since in real applications the heat transfer coefficients

between the fluid and the frozen medium is large, henceforth we only discuss the effect of

the other parameters for a constant heat transfer coefficient HT = 10 that corresponds to

ITE condition for a wider range of parameters than HT = 1.
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(a) Temperature (b) Porosity (c) Concentration

Figure 5.5: Effect of Ste on temperature, porosity, and concentration profiles for Le = 1,
HT = 10 and φmin = 0.7, and Ste = 0.04 to 100 at t = 500.

5.4.3 Effect of Ste

In Figure 5.5, results are presented for different Ste values varying between 0.04 and 100

which approximate the non-melting and instantaneous melting scenarios, respectively. The

heat transfer coefficient is set to HT = 10 with φmin = 0.7 and all the profiles are depicted

at t = 500.

Temperature A larger melting potential of the injected fluid leads to a faster melting and

a faster advancement of the thermal front. So the thermal front gets less hindered by the

melting front and for large Ste values, the temperature profile has a smoother transition to

the melting temperature. As discussed before, the instantaneous melting scenario describes

the large limit of such an increase for which the temperature profile is described by Equation

5.41. The effect of Ste on the advancement rate of the thermal front is more important for

smaller Ste values. This effect can be attributed to the error function profile of Equation 5.41

setting a limit on the advancement of the thermal front for large Ste. Thus the advancement

of the melting front (and the thermal front) for small Ste values is controlled by the melting

rate and for larger Ste is limited by the rate of convection-diffusion of heat in the medium.
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Porosity The rate of melting depends onHφ = Ste/λ×HT , so for a constantHT , increasing

Ste implies a faster melting and faster advancement of the melting front. As mentioned

before, for smaller values of Ste the rate of melting is mainly controlled by the fluid’s melting

potential. However, as Ste increases, the melting front has to wait for the thermal front to

advance. Therefore in the porosity profiles in Figure 5.5, the effects of Ste on the advancement

of the melting front are more significant for smaller values and become less important as the

scenarios become closer to instantaneous melting reference scenario.

Concentration The effect of larger Ste on the concentration distribution is to decrease the

concentration to a smaller value at the melting front by inducing faster melting. Although

the extent of decrease in the concentration and its location are affected by the rate of melting

as well as the position of the melting front, the end point of this front remains more or less

the same (around x = 800) for different Ste values.

5.4.4 Effect of φmin

The next parameter to be analyzed is φmin which defines the initial saturation of the frozen

material in the medium (Ss = 1 − φmin). Figure 5.6 shows the profiles at t = 500 for

different values of the initial porosity (φmin = 0.6 to 0.9) and for Ste = 0.5, HT = 10. It

should be noted that when φmin = 1, there is no frozen material present in the medium and

the temperature and concentration profiles can be simply described by Equations 5.36 and

5.41.

Temperature and Porosity Since in this figure the assigned HT represents ITE condi-

tions and Ste is small, the advancement of the thermal front is hindered by the melting front.

By decreasing φmin, there is more frozen material that should be melted before the melting

front can move further. This consequently causes a slower movement of the melting front.

The amount of heat devoted to melting as described in Equation 5.34 couples the effect of
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(a) Temperature (b) Porosity (c) Concentration

Figure 5.6: Effect of φmin on temperature, porosity, and concentration profiles for stable
scenarios with Le = 1, Ste = 0.5, HT = 10 and φmin = 0.6, 0.7, 0.8, and 0.9 at t = 500

the initial saturate of the frozen material with the heat transfer coefficient HT . Therefore

although a smaller φmin results in a larger heat transfer rate, as seen for HT when the process

reaches ITE conditions, decreasing φmin below a certain value may not affect the melting

rate. This is the case as seen in Figure 5.6 when φmin = 0.6 and 0.7 .

Concentration Due to a smaller porosity of the medium at the frozen regions compared to

the entrance area with φ = 1, the interstitial velocity of the fluid is larger in the frozen area

and it increases by further decreasing φmin. As a consequence, the concentration front has a

faster movement in cases with smaller φmin. Moreover, since the melting front’s advancement

is slower for smaller φmin, the distance between the first concentration drop at the melting

front and the leading edge of the concentration front increases by a decrease of φmin. The

concentration profiles in Figure 5.6 show that the drop in the solvent concentration at the

melting front is smaller when there is less frozen material to melt, although the difference

is less significant for smaller values of φmin. This effect can be attributed to the melting

rate mainly controlled by Ste. So for small φmin values and small Ste, although there is

more material to melt, the amount that actually melts is limited by Ste regardless of the

saturation of the frozen material.

The porosity of the frozen regions φmin is the only parameter that affects the position of
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the end point of the concentration front and consequently the breakthrough time. Progress of

the solvent concentration ahead of the melting front is important as it increases the contact

between the solvent and the inhabitant fluid farther ahead of the thermal front. Therefore,

although the diffusion rate of mass is much smaller than that of heat, convection of the

solvent to farther points may increase the efficiency of miscible displacement processes over

immiscible ones for cases where early breakthrough of the solvent is not an issue (like in

SAGD and VAPEX chambers).

5.4.5 Effect of Le

Since heat diffuses in the medium much faster than mass does, the Lewis number, or the

relative rate of diffusion of the heat to that of the concentration, is expected to be much

larger than 1. The reason for choosing Le = 1 in the scenarios discussed so far is to be

able to compare the growth of the mixing zone for temperature and concentration fronts.

In Figure 5.7 scenarios with HT = 10, φmin = 0.7, Ste = 0.5 and 3.2, are compared for

Le = 1 and 10 at t = 500. The system’s response to changes of Le for different values of the

other parameters, may turn out to be complex. Equation 5.33 shows the interplay of three

terms in the transfer of heat. The convection and diffusion terms result in a net motion of

the thermal front in the downstream direction. The term corresponding to the heat transfer

to the frozen phase however, favors melting over the advancement of the thermal front. A

larger Le results in stronger diffusion of heat in the fluid and the rock phases and leads

to a more diffused thermal front. The value of the heat transfer coefficient HT = 10 used

in this analysis, favors melting over temperature redistribution. Therefore, a slow melting

process suppresses the thermal front while a fast melting scenario gives way to an enhanced

advancement of the thermal front. Having these interpretations in mind, the graphs shown

in Figure 5.7 are now discussed.
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Temperature The stronger heat conduction due to larger Le results in a more diffused

temperature profile. The resistance of the frozen region to melting and the diffusion of heat

in the medium are clearly observed in Figure 5.7 for Ste = 0.5 which does not allow the

thermal front to advance even though diffusion is enhanced. For Ste = 3.2 the fast melting

allows the thermal front to develop a more diffused profile and a higher Le results in a faster

melting.

Porosity The porosity distribution graphs show that faster diffusion of heat in the medium

increases the melting by providing increased amount of heat that reaches the frozen regions.

This effect is different from the effect of the heat transfer coefficient HT which changes the

share of heat that is used for melting. Increasing Le, as stated before, increases the amount

of heat that is provided to the low temperature regions. Thus the critical HT beyond which

the system shows no improvement in terms of melting should be larger for systems with

larger Le. As mentioned before, a slower melting of the frozen region for Ste = 0.5 limits

the expansion of the thermal front. As a result, the effect of larger Le on the melting front

is less significant for smaller Ste.

Concentration The rapid diffusion of heat in the medium results in a faster melting and

a larger jump in concentration at the melting front. It also causes the drop in concentration

to take place at farther points down the flow as the advancement of the melting front is

enhanced. While such an effect is not clear for Ste = 0.5, the concentration profile of

Ste = 3.2 and Le = 10 shows significantly larger drop at the melting front and then a

smoother distribution at the frozen regions which results from the faster melting at the

beginning of the process for Le = 10 than for Le = 1.

The previous results represent a snapshot in time of the system and therefore do not

show the transient nature of the flow. In addition, although the profiles and positions of the
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(a) Temperature (b) Porosity (c) Concentration

Figure 5.7: Effect of Le on temperature, porosity, and concentration profiles for stable
scenarios with φmin = 0.7, HT = 10 and Ste = 0.5 and 3.2 and Le = 1 and 10 at t = 500.

temperature, melting and the concentration fronts provide useful information, they may not

be easily measured in real applications. One may therefore be interested in analyzing the

transient behavior of measurable characteristic quantities. Depending on the purpose of the

displacement process or the natural phenomenon being studied, different quantities can be

defined to assess and categorize different scenarios. The efficiency of a process is one of the

interesting criteria to be defined and measured. Since the extent of melting of the frozen

phase is one of the main focuses of the present system, the cumulative produced melt is a

good representative of the efficiency of the process and its time trends are analyzed next.

5.4.6 Time trends of melting

The amount of frozen material that has been melted up to a specific time is measured

by subtracting the porosity of the medium from its initial value and integrating over the

domain and dividing by the length of the domain Pe. Although for scenarios with sharp

porosity gradients, the amount of melt produced is expected to be commensurate with the

advancement of the melting front in time, for scenarios with extended melting fronts such a

dependence is not a-priori trivial.

The time trends of melting for different scenarios are shown in Figure 5.8 where HT is

varied between 1e − 4 and 100, for Ste = 15, φmin = 0.7 and Le = 1. As expected, the
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Figure 5.8: Effect of heat transfer coefficient on the amount of melt produced for different
scenarios with Le = 1, φmin = 0.7, Ste = 15, and HT = 1e− 4 to 100.

scenarios close to ITE condition (i.e. with HT > 1) have virtually the same amount of melt

and rate of melting. For the slow heat transfer scenarios, expansion of the thermal front over

the frozen domain covers more area with melting. Therefore, although a lower HT results

initially in a slower melting rate, it does lead to more cumulative melt at later times. This

is the case with the HT = 0.1 scenario for which the melting curve surpasses those of the

larger HT at t ≈ 200 and ends up with the maximum amount of melt. Given enough time

for the melting process to speed up, one expects the cases with 1e− 4 ≤ HT ≤ 0.001 to also

ultimately lead to larger melt production than the scenarios with large HT .

When the melting front experiencing a fast heat transfer between the fluid and the frozen

phase, it only shifts in space and does not show any growth or change in its form. This causes

the melt product for ITE scenarios to have an almost perfect linear growth with time. Hence

the slope of the melting curve (i.e. the rate of melting) for fast heat transfer scenarios can

be used to fully characterize the whole melting process. This conclusion is however limited

to moderate values of Ste. For large Ste values, as shown before, the rapid melting results

in a diffused thermal front. The rate of melting is therefore affected by the diffusive growth

of the heated zone as
√

Let for instantaneous melting conditions and the melting zone does

not grow linearly with time any more.
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Figure 5.9: Effect of Ste, Le, and φmin on melting rate at ITE conditions, for HT = 10,Le = 1
and 10, φmin = 0.7 and 0.9, and Ste = 0.04 to 100.

The rate of melting for different scenarios at ITE depends on Ste, φmin and Le. Figure

5.9 shows the slopes for different scenarios with a heat transfer coefficient of HT = 10 versus

Ste for φmin = 0.7 with Le = 1 and 10, and for φmin = 0.9 with Le = 1. As shown before, by

increasing Ste the rate of melting increases and is expected to ultimately reach that of the

corresponding instantaneous melting condition. That is why in all three curves the melting

rate increases faster for smaller Ste values and then reaches a plateau as Ste→∞. A higher

saturation of the frozen phase has a faster heat transfer rate and provides more material to

be melted. Therefore the melting rate curve for φmin = 0.7 is above that of φmin = 0.9 for

all Ste values. However as the melting potential of the fluid decreases, so does the effect of

the initial porosity on the rate of melting. In fact for very small Ste the amount of heat

devoted to melting is the same and results in similar melting rate for different values of φmin.

Faster diffusion of the heat in the medium is expected to result in faster advancement of the

leading edge of the thermal front in the medium. However the thermal front encountered in

the melting is impeded by the melting front. Therefore as discussed in the previous section

and is shown clearly in Figure 5.9, a larger Le does not have any significant effect on the

melting rate when Ste is small. An enhancement of melting as a result of larger Le is however

observed for Ste > 1.
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Figure 5.10: Effect of Ste, Le, and φmin on the advance rate of the melting front at ITE
conditions, for HT = 10,Le = 1 and 10, φmin = 0.7 and 0.9, and Ste = 0.04 to 100.

The rate of advancement of the melting front is plotted in Figure 5.10 versus Ste for

similar scenarios. This parameter can be determined by scaling the melting rate over (1 −

φmin)/Pe and has the dimension of length per unit time. It is more or less trivial that the

melting front has a faster advancement when there is less material to melt. However when

Ste is large, then the thermal front has enough potential to melt all the frozen material on its

way and therefore the saturation of the frozen material does not affect the advancement of

the melting front. Figure 5.9 showed that the melting rate is the same for different scenarios

at very small Ste values while in Figure 5.10 the advancement of the melting front (which

can be scaled back to the amount of melt) is found to be the same for different φmin values

at very large Ste. Therefore, using these data points, one can approximate the melting rate

for different φmin values at fast melting and non-melting conditions.

The analytical study of the rising rate of steam chamber in heavy oil reservoirs by

Gotawala and Gates [119] revealed an inverse proportionality between the vertical advance-

ment rate of the chamber and the oil content per unit reservoir rock volume (i.e. S0). The

melting rate is equivalent to the advance rate of the melting front times the saturation of the

frozen material (1 − φmin). Then a inverse proportionality between the advancement rate

and the saturation of the frozen material can be translated to a constant melting rate for
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different φmin values. The equivalent melting potential of steam at 100 degC for the melting

of bitumen is around Ste = 0.02. We can therefore conclude that this observation agrees

with Figure 5.9 in which, for small Ste, the melting rate is nearly constant for different φmin

values.

5.4.7 Frozen Blocks

In the displacement scenarios discussed so far, the changes in porosity occur only along the

flow direction. Thus although the interstitial velocity increases as the fluid flows through

the frozen regions, the velocity profiles transverse to the flow remain unchanged throughout

the process and the system can be effectively treated as 1D. However if the frozen region is

defined as a confined block within the flow domain, then the system will behave differently

and the velocity field around the frozen block will have a non-uniform distribution. The

ability of the fluid to avoid the frozen region is the main difference between the scenarios

discussed so far and the heterogeneous scenarios consisting of frozen blocks. The velocity

distributions in these heterogeneous media depend on ∇f (i.e. the range and the length scale

of the of permeability variations [170]). The range of variation of the permeability in the

domain, according to Equation 5.8, is determined by the porosity of the frozen region and the

length scale of the variations depends on the geometry of the frozen block. The heterogeneity

of the medium introduces some instabilities to the solutal and the thermal fronts. It should

however be stressed that the system is still viscously stable with βC = βT = 0.

The frozen block in Figure 5.11a is defined as a square of size Lx/3 with φmin = 0.2. The

flow takes place in a medium of length Pe = 128 with Le = 1, Ste = 1.2, and λ = 0.8. The

change in porosity (φ−φt=t0) showing the local cumulative melt and the differential velocity

vectors (φu− i) at t = 30 are depicted in Figure 5.11b and the temperature iso-profiles are

shown in Figure 5.11c. The melt contours show that the melting occurs mainly at the side
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(a) (b) (c)

Figure 5.11: Melting of a square shaped frozen block of size l = Pe/3 for Pe = 128, Le = 1,
λ = 0.8, Ste = 1.2. a) Initial porosity distribution for φmin = 0.2, b) Change in porosity and
differential velocity contours at t = 30, and c) Temperature contours at t = 30.

of the frozen block facing the flow and partially on the transverse boundaries along the flow.

These are the regions where the hot fluid comes into contact with the frozen block. The

differential velocity vectors inside the frozen region point backwards which indicates that

the velocity in this region is less than the injection rate |φu| < 1. In the more permeable

channels, between the frozen region and the transverse boundaries of the domain (i.e. y = 0

and y = Pe/A), the differential velocity vectors are larger (almost three times larger) than the

injection velocity. The fast flow in these high permeable channels results in fast advancement

of the thermal front and increases the contact length between the high temperature fluid

and the frozen material at the boundaries of the frozen block. Ahead and behind the frozen

block the velocity is virtually not affected by the introduced heterogeneity and the differential

velocity is zero.

To analyze the effect of the initial porosity, the melting patterns, differential velocity

vectors and the temperature contours for a frozen square block with a larger initial porosity

of φmin = 0.8 are presented in Figures 5.12a and b. By increasing the porosity of the frozen

region (and consequently its permeability), the velocity inside the frozen region increases to

close to 1 and a larger fraction of the heat can flow through the frozen block. Although the

velocity in the high permeable channels is larger than the one through the frozen region it

is slightly larger than the injection velocity. Thus in Figure 5.12 the temperature profiles

have slower advancement in the high permeable areas and provide smaller contact length
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(a) (b)

Figure 5.12: Melting of a square frozen block with φmin = 0.8 at t = 30 a) Change in porosity
and differential velocity and b) Temperature contours. The other parameters are similar to
those in Figure 5.11.

between the hot fluid and the frozen block. In this case, the frozen block melts evenly in

the y direction as a result of the more even distribution of the velocity field in the medium.

This is to be contrasted with the low porosity block (Figure 6.11) where the bulk of the hot

fluid rushes around the frozen block extending the melting on the side walls where the frozen

block contacts the hot fluid.

These observations lead to distinguishing two main mechanisms for the melting of the

frozen block. The first mechanism is the internal heat transfer that melts the frozen material

through the flow of heat inside the frozen block, similar to the one dimensional scenarios

discussed earlier. The second mechanism melts the frozen material on the sides of the frozen

block adjacent to the high permeable channels. In these regions the melting is due to the

heat convection between the fluid and the frozen block and therefore the second melting

mechanism is called outer-boundary convection. A larger velocity in the high permeable

channels increases the melting through this mechanism. Any possible dominance of the

involved melting mechanisms depends on the velocity distribution in the domain and hence

the geometry and initial porosity of the frozen block. A strong flow through the frozen region

as observed in Figure 5.12 improves melting inside the frozen region while a fast flow around

the frozen block as observed in Figure 6.11 enhances melting through the outer-boundary

convection.

Beside the initial porosity, the heterogeneity of the medium is also characterized by the
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length scale of permeability variations which can be reflected by the width of the frozen block.

Figures 5.13 and 5.14 depict the same contours as shown in Figure 6.11, for two rectangular

blocks of size (Pe/12 × Pe/3) extended along and transverse to the main flow direction,

respectively. These geometries will be referred to as the long and the wide rectangle blocks,

respectively. The porosity of both blocks is φmin = 0.2. When the long rectangle block and

the square one in Figure 6.11 are compared, one finds that a reduction of the block’s width

decreases the flow velocity inside the frozen block as it is easier for the flow to avoid the low

permeable region. This reduces the rate of melting through the first melting mechanism. Also

the flow of the fluid in the high permeable channels around the long rectangle block is slower

since the width of these channels is larger for this block geometry. As mentioned before, a

slower flow around the frozen block reduces the melting on its boundaries by reducing the

equivalent convective heat transfer coefficient. Furthermore, the heat transfer due to outer-

boundary convection depends strongly on the contact length between the thermal front and

the frozen block. A slower flow, which means a slower progress of the thermal front as shown

in Figure 5.13c, provides a smaller contact length between the high temperature fluid and the

frozen block and hence a smaller contribution to melting through outer-boundary convection

(compare Figures 5.11c and 5.13c).

The wide rectangle has a higher permeability to the flow than the square block as its

length is smaller and therefore the velocity inside the wide rectangle block is slightly larger

than that in the square one. For the same reason in the high permeable channels beside the

frozen block, the velocity is smaller for the wide rectangle than the square block. The smaller

velocity in the high permeable regions and the smaller length of the wide rectangle frozen

block can result in smaller outer-boundary convection. In spite of this, the fast progress of

the thermal front in the high permeable channels observed in Figure 5.14c allows the heat

to encircle the frozen block over a short time and increases the outer-boundary convection
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(a) (b) (c)

Figure 5.13: Melting of a long rectangle shaped frozen block of length l = Pe/3 and width
w = Pe/12 for Pe = 128, Le = 1, λ = 0.8, Ste = 1.2. a) Initial porosity distribution
for φmin = 0.2, b) Change in porosity and differential velocity contours at t = 30, and c)
Temperature contours at t = 30.

(a) (b) (c)

Figure 5.14: Melting of a wide rectangle shaped frozen block of length l = Pe/12 and width
w = Pe/3 for Pe = 128, Le = 1, λ = 0.8, Ste = 1.2. a) Initial porosity distribution
for φmin = 0.2, b) Change in porosity and differential velocity contours at t = 30, and c)
Temperature contours at t = 30.

by increasing the contact length between the hot and the frozen phases.

The two dimensional contours are helpful in understanding some aspects of the melting

process. However one cannot make definite conclusions about the contribution of any of

the melting mechanisms based solely on these profiles. It is also hard to make comparative

analyses between the different geometries and initial porosity values based on such contours.

In the following sections a more quantitative analysis is presented.

Contribution of the Melting Mechanisms

To determine the importance of each of the melting mechanisms, the velocity fields are

analyzed with a particular focus on the flow inside the frozen blocks. If the rate of melting

due to the transport of heat inside the frozen region is assumed to be proportional to the

flux of heat through this region, then an estimation of the heat flux through the frozen block
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would be helpful in determining the contribution of this melting mechanism to the total

melting.

For the condition of the discussed scenarios and based on the velocity profiles in Figures

6.11-5.14, that retain the uniform injection velocity profile closely before and after the frozen

region, the length of influence of heterogeneity can be assumed to be equal to the block’s

length. Such an assumption may not be valid for large injection rates and an equivalent

length for the block should be defined. Hence, the velocity uF inside the frozen region with

relative permeability κmin and uO in the high permeable channels of relative permeability 1,

can be approximated from the mass and momentum conservation equations:

uFν + uO(1− ν) = 1

uF
uO

= κmin

(5.42)

Therefore

uF =
κmin

κminν + (1− ν)

uO =
1

κminν + (1− ν)

(5.43)

Here ν = wFB/(Pe/A) is the relative width of the block (wFB) to that of the domain

(Pe/A). The permeability of the frozen region κmin is scaled with respect to the rock per-

meability as defined in Equation 5.19 and is always less than 1.

Equation 5.43 shows that both uF and uO decrease as the width of the block ν is de-

creased. The effect of the initial porosity can also be deduced from this equation. With an

increase of κmin, the velocity inside the frozen block increases while uO decreases. It should

be noted that during the melting process, the geometry of the block and its porosity change

and therefore the initial descriptions of the block only give rough estimates for the velocity

at later times.
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The total 2D heat flow through the domain and the share that enters the frozen block

are:

Qtotal = ρfcpf (Pe/A)(uFν + uO(1− ν))

= ρfcpfPe/A

Qblock = ρfcpf (Pe/A)uFν

(5.44)

Hence the fraction of the total heat flux that enters the frozen region is uF × ν and can

be determined using Equation 5.43. The fractional heat flux for different block geometries

and initial porosity values are plotted in Figure 5.15. For the one dimensional scenario,

the fraction of heat that enters the frozen regions is trivially constant; 1. According to the

graphs, the fractional heat flux is the same for the wide rectangle and the square blocks and

is smaller for the long rectangle than the other two block geometries. In a homogeneous

medium with φmin = 1, the share of heat that flows through the defined frozen block would

be equal to the corresponding ν of the block which is ν = 0.67 for the square and the wide

rectangle blocks and ν = 0.17 for the long rectangle one.

As mentioned earlier, we are assuming that the heat transfer inside a frozen block is

proportional to the flux of heat passing through this region. Therefore, neglecting the melting

at the outer-boundaries of the block, the ratio of the cumulative melt of a frozen block over

that of the one dimensional case (relative cumulative melt) should be close to the fractional

heat flux passing through the frozen block. A comparison between these two ratios (i.e. the

relative cumulative melt and the fractional heat flux) can help determining the importance of

each of the melting mechanisms. In Figure 5.15, two sets of scattered data points represent

the relative cumulative melt of the frozen blocks at two different time steps t = 5 (the solid

triangles) and t = 30 (the asterisks) for φmin = 0.4. At the early time steps (t = 5) when

the effect of heat convection to the outer boundaries of the frozen block is negligible, the
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Figure 5.15: Fractional flux of heat entering the frozen region (ufν) for different block
geometries and the one dimensional scenario. The data points represent cumulative melt
ratio (i.e. cumulative melt of the frozen block over the cumulative melt of the 1D scenario at
each time step) for the corresponding frozen block geometry at t = 5 (triangles) and t = 30
(asterisks). Other parameters are set as HT = 0.1, Pe = 128, Le = 1, λ = 0.8, Ste = 1.2.

data points are close to the curves for all block geometries. These data points confirm the

validity of our premise about the proportionality of melting to the heat flux. At t = 30 the

advancement of the thermal front in the high permeable channels increases the contribution

of convection at the outer boundary to the cumulative melt, and the relative cumulative

melt values become significantly larger than the fractional heat flux values. The difference

between the relative cumulative melt and the fractional flux is due to the contribution of the

outer-boundary convection to melting. The data points confirm that the contribution of this

melting mechanism is larger in the square block geometry than in the rectangular blocks.

Even the wide rectangle block shows a larger contribution of the outer boundary convection

than the long rectangle block. As stated earlier, this is due to the larger contact length that

forms between the thermal front and the frozen region for the wide rectangle block as the

thermal front encircles the frozen region.

Comparative Analysis

In order to compare the different melting scenarios, like in the one dimensional case, the

cumulative melt production is used as it has been shown to be helpful in defining the efficiency

140



www.manaraa.com

of the melting processes and tracking the effect of different parameters. The ratio of the

amount of melted material to that of the initial frozen material (Melt %) is also presented

as this parameter scales the melt with respect to the initial saturation of the frozen material

and the geometry of the frozen block.

As we shall see next, both of the cumulative melt and the Melt % have in general S-shape

history profiles that result from the different regimes of melting. In the initial regime, the

rate of melting is slow as the only melting mechanism is through the flow of heat into the

frozen region. Later melting increases as a result of outer-boundary convection and finally

forms a plateau once all the frozen block has melted. This S-shape profile has been observed

in a wide variety of phenomena and is considered to be a characteristic of systems that follow

the constructal law [171]. A succession of invasion and consolidation regimes characterizes

these phenomena [171, 172]. The invasion regimes in this model are driven by the devel-

opment of thermal fingers in the high permeability regions increasing the melting through

outer-boundary convection which slows down as the fingers reach the end of the frozen block.

Beyond this point, the melting process goes through the so called ”consolidation” regime

where in the absence of invasion, the rate of melting gradually decreases. Different param-

eters affect the rate of melting in each of these regimes. Here for brevity, we will only look

at the effect of φmin and the frozen block’s geometry.

Effect of φmin The effect of initial porosity on the cumulative melting is illustrated in

Figure 5.16. In this figure only the cumulative melting curves of the wide rectangle block

are shown as they show interesting non-monotonic trends. By reducing the initial porosity

from φmin = 0.8 to φmin = 0.4, the cumulative melt increases significantly. This is expected

as a smaller φmin in the one dimensional scenarios was shown to increase the cumulative

melt by allowing a larger amount of frozen material to melt as well as by increasing the

share of heat that is devoted to melting. However the melting rate for φmin = 0.4 is larger
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Figure 5.16: Cumulative melt production for the wide rectangle frozen block with dimensions
similar to Figure 5.14an for Pe = 128, Le = 1, λ = 0.8, Ste = 1.2.

than for φmin = 0.2 when t < 40. This is attributed to the significant decrease in heat

flux through the frozen region due to the decrease in the initial porosity. So the possibility

for the flow to avoid the low permeable area decreases the melting rate through heat flux

and this reduction prevails over the mentioned mechanism that leads to faster melting of

the blocks with smaller porosity. For t > 40 all of the frozen material in the block with

φmin = 0.4 gets melted and the cumulative melt for φmin = 0.2 scenario becomes larger.

Such non-monotonic behavior was not observed for the other two geometries. For the square

block more outer-boundary convection due to larger velocity in the high permeable channels

overcomes the smaller heat flux through the frozen block and the cumulative melt increases

with a decrease of φmin. Moreover, melting of the long rectangle block occurs mainly due

to the outer-boundary convection. Therefore reducing φmin increases the heterogeneity and

enhances the melting by this mechanism.

Effect of the Block Geometry The cumulative melt curves for different block geometries

are shown in Figure 5.17. The results from these curves, along with the previous discussions,

reveal a faster melting for the square frozen block than the rectangular ones. Also the

wide rectangle block melts faster than the long one. Since the heat fluxes through the wide

142



www.manaraa.com

Figure 5.17: Effect of the block geometry on cumulative melt production; Parameters set as
Pe = 128, Le = 1, λ = 0.8, Ste = 1.2 and φmin = 0.8.

rectangle and the square shaped blocks are similar, both geometries have the same melting

rates in the early stages of the process. Later, the contact length between the thermal front

and the frozen region increases, and the outer-boundary convection enhances the melting

for the square block. As mentioned earlier, the long rectangle has a smaller heat flux and a

smaller outer-boundary convection compared to the other blocks.

Melt % Graphs As can be seen in Figures 5.16 and 5.17, the ultimate values of the

cumulative melt depend on the block geometry as well as the initial saturation of the frozen

material. To factor in the effect of the amount of initial material, plots of the melt percentage

defined as Melt% = cumulative melt/(wFBlFB(1 − φmin)) are shown in Figure 5.18 for

different geometries and initial porosity values. The wide rectangle, shows a larger Melt %

than the other two geometries. This can be attributed to the fact that the long rectangle

and square blocks extend along the flow direction and it takes longer for the flow to sweep

the whole frozen region. Between the long rectangle and the square geometries, although the

outer boundary convection in the square geometry is stronger, its area of influence compared

to the total area of the frozen region is smaller. While in the long rectangle block the small

width of the frozen block causes the outer boundary convection to reach the middle of frozen

region and the melting grows evenly transverse to the frozen region. So the Melt % is larger
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for the long rectangle geometry than the square one.

In Figure 5.18 the effect of φmin on the Melt % is monotonic and frozen blocks of the same

geometry but smaller porosities show a slower growth of Melt %. As described by Equation

5.34, when all other parameters are fixed, the rate of melting grows as (1 − φmin)2/3 while

the amount of material that can be melted grows as (1 − φmin). As a result, the growth of

Melt % decreases as (1 − φmin)−1/3. So for the same geometry, a block of smaller φmin has

a smaller Melt % growth. This argument is obviously applicable only to 1D scenarios as it

does not consider the redistribution of velocity field around the frozen block due to changes

of initial porosity. In heterogeneous media, as the porosity of the frozen region decreases

less heat flows through this region and this contributes to the reduction of melting rate.

On the other hand decreasing φmin increases the flow rate in the high permeability regions

and consequently increases the rate of melting thorough outer-boundary convection. Hence,

when the effect of the outer-boundary convection is dominant, as in the case of the long

rectangle with small φmin, the effect of φmin on decreasing Melt % is weaker (see the small

difference between the curves corresponding to the long rectangle block with φmin = 0.2 and

0.4). However when the contribution of the outer-boundary convection to melting is smaller

than the flow of heat inside the frozen region, the effect of φmin on Melt % is more significant

(e.g. for the wide rectangle block).

Unification of the Cumulative Melting Curves

The dependence of the cumulative melt on the amount of the frozen material in the medium

and the geometry of the frozen block, makes it difficult to compare different scenarios. Hence,

a scaling factor with respect to the amount of frozen material present in the frozen region

and the shape of the frozen block, is required to compare the rate of melting for the discussed

scenarios and may allow to extend the predictions to other block geometries and other initial

porosity conditions. For the effect of φmin, as applied for Melt %, the cumulative melt can
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Figure 5.18: Effect of the block geometry and initial porosity of the frozen block on Melt %
production for Pe = 128, Le = 1, λ = 0.8, Ste = 1.2.

be scaled by the initial amount of the frozen material per unit area of the block. This scaling

transforms the cumulative melt to the equivalent area that has been melted. Throughout

the melting process the melted area increases from 0 and reaches the total area of the block

for all initial porosity values. As observed in the Melt % graphs in Figure 5.18 the scaling

with respect to the area of the frozen block results in faster growth of the scaled parameter

for blocks of smaller length. So in order to account for the geometry of the frozen block the

width of the block facing the flow is used as a scaling factor which transforms the melted

area to the melted length of the block (equivalent to the advancement of the melting front in

the frozen block). Before scaling the curves based on the proposed factors, another scaling

is applied to time which reveals interesting results. In Equation 5.34, assuming that the

whole porosity varies from φmin to 1 in a single time step at a constant θ results in a melting

time scale proportional to (1− φmin)1/3. This suggests that a block of larger φmin takes less

time to melt than a block with a smaller initial porosity, and the proportionality factor for

their rate of melting is (1 − φmin)1/3. The cumulative melt curves for different φmin values

and geometries are scaled and plotted versus the scaled time in Figure 5.19. The results

show good agreement between the curves corresponding to different block widths and initial

porosity values.
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Figure 5.19: Unification of cumulative melt curves for different geometries and different
initial porosity values for the scaled cumulative melt melt/((1− φmin)×wFB) versus scaled
time as t/(1− φmin)1/3. Other parameters are Pe = 128, Le = 1, λ = 0.8, Ste = 1.2.

Although the width of the frozen block seems to be effectively scaling the melting curves

for rectangular block shapes, its validity for other block geometries like a circular one needs

further investigation. The flow through and around the frozen block (and therefore the

rate of melting) depends on its width facing the flow. Intuitively, a block of streamlined

shape melts more slowly than a rectangular block as it allows the flow to pass around it

and a smaller share of the fluid flows through the frozen region. Such characteristics of

the cumulative melt are similar to the drag force and therefore the drag coefficient can be

adopted as a reference for finding the scaling factor of frozen blocks of different shapes. The

drag factor for a two dimensional flow around a square obstacle is 2.05 whereas a circular

obstacle with the same projected area normal to flow has a drag factor of 1.17. Using the

width of the block as the scaling factor, the scaling factor for a circular block of diameter

DFB = wFB is 0.57×w. The results of scaling depicted in Figure 5.20 show good agreement

between the three initial porosity values of the round block and the curve corresponding to

the long block with φmin = 0.2 which was chosen as a representative of the matched curves in

Figure 5.19. Of course there are differences between the two phenomena compared together.

Yet for the scaling of the cumulative melt even such a rough approximation of the shape
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Figure 5.20: Scaling of cumulative melt production for circular obstacles with different initial
porosity values matched with that of a long rectangle with φmin = 0.2. Other parameters
are Pe = 128, Le = 1, λ = 0.8, Ste = 1.2.

factor gives satisfactory match between the graphs.

5.5 Conclusion

In this study we have developed a two dimensional model for non-isothermal displacements

through melting porous media. Viscously stable scenarios in homogeneous and heteroge-

neous media have been defined and analyzed to understand these processes for possible

improvement and optimization. A transient thermal equilibrium between the fluid-rock sys-

tem and the frozen phase allowed us to examine the effect of the heat transfer coefficient on

melting. It has been shown that large heat transfer coefficients that exceed a certain critical

value do not result in significant changes in the process, and the temperature, porosity, and

concentration profiles are those of instantaneous thermal equilibrium (ITE). In addition to

ITE, three other limit cases including HT0, non-melting and instantaneous melting have

been defined as reference scenarios. Analytical solutions for the distribution of the vari-

ables of interest have been provided where applicable, and the simulation results have been

matched with the analytical solutions. A study of the effect of the different parameters on

the melting process showed that a small heat transfer coefficient results in a diffused ther-
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mal (and consequently melting) front. In contrast, a fast heat transfer between the fluid

and the frozen phase increases the gradients at the melting front. A similar conclusion was

reported by Harlan [153] in an analysis of flow in partially frozen soil where the soil-water

redistribution area in finer textured soils (with large heat transfer rate) was reported to be

more restricted to a proximity of the freezing front. In terms of the melting potential of the

fluid, it was found that a large Ste results in faster melting. However for very large values,

the advancement of the melting front is limited by the heat’s diffusion and convection in the

medium. By reducing the initial porosity in the frozen phase, the saturation of the frozen

material increases. A smaller initial porosity therefore results in a slower advancement of the

melting front. This parameter, φmin is the only parameter that has a significant influence

on the breakthrough time of the concentration front by increasing the interstitial velocity in

the frozen regions. Increasing the rate of diffusion of heat, Le, increases the advancement

of the melting front, however its influence was found to be not significant for small Ste.

The cumulative melt production and the rate of melting that has been scaled to determine

the advancement rate of the melting front have been used to compare different scenarios.

According to the time trend profiles of melting, a small heat transfer coefficient can result in

more melt production in a sufficiently long time period than the thermal equilibrium condi-

tions. Moreover the results showed that for small Ste values the effects of the initial porosity

and Le (as mentioned before) on the rate of melting are negligible while for large Ste values,

the rate of melting is proportional to the initial saturation of the frozen material (1−φmin).

The effect of heterogeneity has been also examined by considering frozen blocks of different

shapes. The mechanisms of melting of the frozen blocks have been shown to be internal

heat transfer and outer-boundary convection. Reducing the initial porosity and increasing

the width of the frozen block have been shown to increase the velocity around the block and

hence the melting through outer-boundary convection. Premising the internal heat trans-
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fer to be proportional to the heat flux through the frozen block allowed us to estimate the

contribution of each of the involved melting mechanisms at different time steps. Finally by

scaling the cumulative melt and time, a generalized curve independent of the geometry and

initial porosity of the frozen block, has been obtained.
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Chapter 6

Hydrodynamic Instabilities of Flows Involving Melting

in Under-Saturated Porous Media

1 The process of melting in partially saturated porous media is modeled for flow displace-

ments prone to instability due to adverse mobility ratios. The effects of the development of

instabilities on the melting process are investigated through numerical simulations and an-

alytical solution of simplified models. The effects of melting parameters namely the melting

potential of the fluid, the rate of heat transfer to the frozen phase, and the saturation of

the frozen material along with the parameters defining the viscous forces, i.e. the thermal

and solutal log mobility ratios are examined. Nonlinear simulation results are presented for

different scenarios and the enhancement or attenuation of instabilities are discussed based

on the the dominant physical mechanisms. Beside an extensive qualitative analysis, the

performance of different displacement scenarios are compared with respect to the melt pro-

duction and the contribution of instability to the enhancement of melting. It is found that

the development of instabilities in general enhances melting but the rate of enhancement

depends on how the melting front covers the instabilities at the thermal front. A larger

melting potential and a smaller saturation of the frozen material increase the contribution

of instability to melting.

1This chapter is the exact reproduction of the article submitted to Physics of Fluids journal with the
same title.
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6.1 Introduction

In this chapter the dynamics of non-isothermal miscible displacements through under-saturated

frozen media are studied. The fundamental aspects of the problem have been investigated in

an article on modeling of the viscously stable scenarios [173]. In this study we would like to

examine the instabilities driven by viscous forces in the described displacement processes and

evaluate their effects on the melt production. The instability that happens due to viscosity

contrast between the injected and the inhabitant fluids is called viscous fingering. Due to

causing early breakthrough of the displacing agent and reduction of the sweep efficiency of

the displacement process, this form of instability has been studied extensively through lab

experiments [34, 174, 4] and numerical simulations [8, 35, 175, 139]. In non-isothermal dis-

placements, due to the involvement of temperature in defining the viscosity of the fluid the

instability is known as thermo-viscous fingering. Nonlinear simulations and linear stability

analyses of thermo-viscous fingering along with the related experiments have been the sub-

ject of numerous studies including but not limited to [25, 52, 176, 22, 27, 24, 130, 23]. These

studies reveal the details of the developing fingers and the rate of growth of the instabili-

ties for different thermal/solutal mobility ratios and thermal properties of the fluid/porous

medium.

In a melting porous medium, the development of fingering instabilities is coupled with

the changes in the permeability of the medium due to the melting of the frozen phase.

The heterogeneity of the medium resulting from the melting introduces another source of

instability in the flow, namely channeling or heterogeneity induced instability which closely

interacts with the viscous forces through the melting process. The effect of heterogeneity

on miscible displacement processes has been extensively discussed in a number of previous

studies. Some of these studies were devoted to defining the parameters that characterize
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the strength of heterogeneity of the medium [58, 76, 131] while others investigated the

interactions between viscous fingering and heterogeneity induced instabilities [64, 72, 73, 69,

66, 177] and led to characterization of the unstable flow regimes [178, 170]. There are however

no studies that have examined flow displacements where the heterogeneity is a result of the

melting of one phase and hence is dynamically evolving throughout the displacement process.

This is despite the fact that flows through melting porous media are inherently unstable

and even the viscously stable scenarios are prone to the development of instabilities in the

presence of irregularities in the media’s porosity distribution. In particular, in the modeling

of large scale phenomena involving the melting of the porous medium such as permafrost

melting, flow of magma, or sea ice melting, consideration of the effect of instabilities at

the melting front is important. Most particularly the effect of instability on melting has

been recognized in heavy oil recovery processes. In steam assisted gravity drainage (SAGD)

recovery processes the rising of the steam chambers in bitumen reservoirs has been shown to

be due to the development and growth of steam fingers [116, 115]. The systematic analysis of

the effect of the instabilities on the rate of melting and advancement of the melting front, and

examination of the coupling between the created heterogeneity and growth of instabilities

are beneficial for the named applications.

6.2 Modeling

The problem consists of the injection of a hot solvent in a porous medium of size Lx × Ly

(with aspect ratio of A = Lx/Ly) at a uniform and constant injection velocity U . The

solvent concentration and temperature of the injected fluid and the inhabitant one are C1

and T1, and C2 and T2, respectively. Due to the higher temperature of the injected solvent

and the higher solvent concentration, this fluid has larger mobility than the inhabitant one

and therefore their interface is prone to hydrodynamic instability. Initially the medium
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Figure 6.1: Diagram of the modeled domain at t0 and t > t0

is partially saturated with a frozen material that, when melted, is fully miscible with the

injected solvent. The objective is to displace the inhabitant fluid and the melted material

and produce them at the other end of the domain. The matrix (here called the rock) has

a constant and homogeneous porosity φR and permeability κR available to the fluid when

all the frozen material is melted. The porosity of the medium φ, initially assigned as φmin,

defines the saturation of the frozen material Ss = φR − φ that varies with time and location

during the melting process. As the injected fluid enters the frozen region, melting starts and

the injected heat serves to melting the frozen material and increasing the porosity as well

as to increasing the temperature of the fluid and the matrix. Unlike the heat, the solvent

concentration is contained within the fluid during the displacement process as no deposition

or chemical reaction between the fluid and the matrix is considered. The only change in

concentration, other than the regular convection-diffusion, takes place at the melting region

as the melted fluid dilutes the solution. Figure 6.1 is a schematic of the process.

The physical system consists of three phases, namely the rock, the frozen (solid) and the

fluid phases. The conservation of mass and momentum and a convection-diffusion equation

for solvent concentration are adopted for the fluid phase. In terms of the heat transfer, the

fluid and the rock are assumed to reach thermal equilibrium instantaneously but the frozen

phase melts and reaches the temperature of the rock-fluid phase through a transient process.
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Therefore, the conservation of energy is formulated in two parts. The first one describes the

convection and diffusion of heat in the rock-fluid phase including the share of heat that goes

towards melting. The second equation describes the amount of the frozen material that gets

melted by the heat transferred to the frozen phase.

∇.~uD = 0 (6.1)

∇P = −µ
κ
~uD (6.2)

∂(φC)

∂t
= −∇.(C~uD) +DC∇.(φ∇C) (6.3)

(ρfcpfφ+ ρRcR(1− φR))
∂T

∂t
=

∇.[(kfφ+ kR(1− φR))∇T ]− ρfcpf∇.(T~uD)− h(T − Tm) (6.4)

(ρs∆hf + ρfcpf (T − Tm))
∂φ

∂t
= h(T − Tm) (6.5)

In the above equations ~uD(x, y, t) = (uD, vD) is the Darcy velocity vector, P (x, y, t) is the

pressure, and µ(x, y, t) and κ(x, y, t) are the fluid viscosity and the medium’s permeability,

respectively. As mentioned before φ(x, y, t) is the porosity and C(x, y, t) is the solvent con-

centration while DC is the mass diffusion coefficient. The rock-fluid temperature is denoted

by T and Tm refers to the melting temperature of the frozen phase. The density, specific

heat capacity, and thermal conductivity of different phases are referred to as ρ, c, and k

corresponding to different phases depending on the assigned subscripts as f for the fluid, s

for the solid or the frozen phase, and R for the rock. The latent heat of melting is denoted

by ∆hf . The equations are made dimensionless using the following diffusive scaling:

c∗ =
C − C2

C1 − C2

θ∗ =
T − Tm
T1 − Tm

(u∗, v∗) =
(uD, vD)/φ

U/φR
(x∗, y∗) =

x, y

DCφR/U

t∗ =
t

DCφ2
R/U

2
p∗ =

P

φRµ1DC/κR
µ∗ =

µ

µ1

κ∗ =
κ

κR
φ∗ =

φ

φR

(6.6)

The subscripts 1 and 2 correspond to the properties assigned to the injected and the
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inhabitant fluids, respectively. The resulting dimensionless equations are:

∇.(φ∗u∗) = 0 (6.7)

∇p∗ = −µ
∗

κ∗
φ∗u∗ (6.8)

∂(φc∗)

∂t∗
= −φ∗u∗.∇c∗ +∇.(φ∗∇c∗) (6.9)

∂θ∗

∂t∗
=

1

(1− λ(1− φ∗))
×

[Le∇. ((1− (1− φ∗)krel)∇θ∗)− λφ∗u∗.∇θ∗ −
12Lekrel

Pe2(dP/Lx)2
(1− φ∗0)1/3(1− φ∗)2/3θ∗] (6.10)

∂φ∗

∂t∗
=

1
ρrel
Ste′

+ θ∗

[
12Lekrel

λPe2(dP/Lx)2
(1− φ∗0)1/3(1− φ∗)2/3θ∗

]
(6.11)

where:

λ =
ρfcpfφR

(ρfcpfφR + ρRcR(1− φR)
, ρrel =

ρs
ρf
, krel =

kfφR
kR(1− φR) + kfφR

(6.12)

DT =
kfφR + kR(1− φR)

ρfcpfφR + ρRcR(1− φR))
, Le =

DT

DC

, Ste′ =
cpf (T1 − Tm)

∆hf
(6.13)

In these equations λ denotes the thermal lag coefficient, Le and Ste′ are the Lewis and

Stefan numbers, and DT is the diffusion rate of heat in the rock-fluid phase. Finally krel is

the relative thermal conductivity of the fluid to that of the fluid-rock phase. The constitu-

tive correlations used for the derivation of the model include: The heat transfer coefficient

adopted from [162] and modified by [173]:

h = h∗s̄s ≈ 12φR
kf
d2
p

(1− φ∗0)1/3(1− φ∗)2/3 (6.14)

where dp is the porous medium’s pore dimension and φ0 is a reference porosity with a

known specific surface area. For the permeability-porosity correlation a form of Kozeny’s

empirical correlation is used [103]:

κ∗ =
κ

κR
= φ∗3

(
1/φR − 1

1/φR − φ∗

)4/3

(6.15)
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The Viscosity of the fluid is defined as an exponential function of the fluid tempera-

ture and the solvent concentration adopted from [25, 22] extensively used to determine the

viscosity of aqueous and non associating mixtures [136, 137, 16].:

µ∗ = exp (βC(1− c∗) + βT (1− θ∗)) (6.16)

Thus the viscosity ratio (i.e. the mobility ratio for miscible displacements) is µ∗2 =

exp(βC + βT ) and βC and βT are referred to as the solutal and thermal log-mobility ratios,

respectively.

The group HT = 12Lekrel
Pe2(dP /Lx)2

(1 − φ∗0)1/3 is regarded as the heat transfer coefficient in

the new dimensionless system. Although HT is dealt with as an independent factor, when

examining the effect of Pe and Le on the system, the changes in these parameters are reflected

in the value of HT as well. Also Ste = Ste′/ρrel is used to describe the melting potential of

the injected fluid.

Equations 6.7 and 6.8 are recast to obtain the velocity field using the vorticity (ω) and

the stream function (ψ):

∇×∇p∗ = −(∇µ
∗

κ∗
× φ∗ ~v∗ +

µ∗

κ∗
∇× φ∗ ~v∗)

ω = −∇(ln(µ∗)− ln(κ∗))× φ∗ ~v∗

= −(βC∇c∗ + βT∇θ∗ +∇f).∇ψ

Dropping the asterisks for brevity, the final form of the dimensionless equations is:

ω = −(βC∇c+ βT∇θ +∇f).∇ψ (6.17)

ω = −∇2ψ (6.18)

∂(φc)

∂t
= −φu.∇c+∇.(φ∇c) (6.19)

∂θ

∂t
=

1

(1− λ(1− φ))
[Le∇. ((1− (1− φ)krel)∇θ)− λφu.∇θ −HT (1− φ)2/3θ] (6.20)

∂φ

∂t
=

1

1 + Steθ

Ste

λ
HT (1− φ)2/3θ (6.21)
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6.2.1 Initial and Boundary Conditions

Except for a small band of thickness x0 from the injection boundary where the hot solvent

has melted all the frozen material and the temperature of the fluid-rock has reached that of

the injection boundary, the rest of the domain is initially filled with the inhabitant fluid at

the melting temperature. The initial conditions are formulated as:

θ(x, y, 0) =
1

2
erfc(

x− x0

2
√
t0

) (6.22)

c(x, y, 0) =
1

2
erfc(

x− x0

2
√
t0

) (6.23)

φ(x, y, 0) =
(1− φmin)

2
erfc(

x− x0

2
√
t0

) + φmin (6.24)

During the displacement process, the hot solvent is injected from the left side of the do-

main (upstream boundary) and the temperature and concentration at the downstream and

upstream boundaries remain constant. Transverse to the flow direction, periodic bound-

ary conditions are adopted. The following equations describe the dimensionless boundary

conditions:

(c, θ)(0, y, t) = (1, 1)

(c, θ)(Pe, y, t) = (0, 0)

∂

∂x
(c, θ)(0, y, t) =

∂

∂x
(c, θ)(Pe, y, t) = (0, 0)

(φ,u)(0, y, t) = (1, i)

(c, θ,
∂c

∂y
,
∂θ

∂y
, φ,u)(x, 0, t) = (c, θ,

∂c

∂y
,
∂θ

∂y
, φ,u)(x,Pe/A, t)

(6.25)

6.3 Numerical Method

A finite difference method with non-uniform grid distribution which adapts itself with the

melting front’s profile has been adopted. The grids in the y direction are distributed evenly
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transverse to the flow and the derivatives are determined using second-order central difference

formula. A weighted derivation method with second order accuracy has been used to obtain

the first and second derivatives in the x direction [167]. For the temporal discretization a

second order iterative AB-AM predictor corrector scheme was adopted.

The predictions of the code for stable scenarios were verified through comparisons with an-

alytical solutions of limiting cases including very slow heat transfer (HT → 0), instantaneous

melting (Ste → ∞) and no melting (Ste → 0) scenarios [173]. The results of the numerical

simulations agreed perfectly with the analytical solutions indicating the convergence of the

numerical method. To validate the code for scenarios with hydrodynamic instability, due to

the absence of relevant results in the literature on instabilities in frozen media, a non-melting

scenario has been considered. The results for φmin = 1, βC = 2, βT = 1, λ = 1, Pe = 2000,

Le = 1 and Lx/Ly = 2 that correspond to thermo-viscous fingering in homogeneous porous

media have been matched with those reported in [130]. It was found that there is very

good agreement in terms of the number, size, and growth rate of the fingers. Finally, the

convergence with the temporal and spatial resolution has been ascertained.

6.4 Results and Discussions

The effects of different parameters on the enhancement or weakening of the instability are

examined under different scenarios. The main parameters to be analyzed in unstable sce-

narios are the solutal and thermal log mobility ratios (βC , βT ) that define the strength of

viscous instabilities and those that affect the melting process; namely HT , Ste, and φmin.

In the first part of this section, the development and growth of melting instabilities due

to the coupling between thermo-viscous forces and the medium heterogeneity induced by the

instabilities are examined. The results are mostly qualitative and are presented in the form

of 2D temperature, porosity and concentration iso-profiles. The reasons behind the observed
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trends and how the system behaves for a wider range of parameters will be presented in

the following part analyzing the physical mechanisms responsible for the instabilities. In

a subsequent part, a quantitative analysis of the performance of the melting process and

the contribution of instabilities to melting for different scenarios are presented and a unified

trend for the enhancement of melting is proposed. Finally the effect of Pe, Le, and λ on

the development of instabilities and increase of melting are discussed briefly. Throughout

the chapter unless stated otherwise, the values of the parameters are fixed as: HT = 1,

Pe = 1000, A = 2, Le = 1, λ = 0.8, (βC , βT ) = (2, 2), and φmin = 0.7.

6.4.1 Simulation Results for Unstable Scenarios

In pure thermo-viscous fingering (i.e. non-melting) scenarios, the instabilities on the thermal

and solutal fronts depend on the values of the corresponding log mobility ratios as well as

the rates of advancement of those fronts. In such scenarios the concentration front moves

ahead of the thermal front with the gap between them increasing with 1 − λ and time.

Depending on the gap and the assigned mobility ratios, the interaction between the fronts

can enhance or attenuate the instabilities [25, 27, 130]. In the case where melting takes place,

the advancement rates of the thermal and the melting fronts are closely interdependent.

Furthermore due to melting, the concentration also exhibits a sharp drop at the melting

front which moves at the pace of that front. Therefore in melting scenarios, thermal, solutal,

and melting fronts are strongly interconnected. Ahead of the melting front, the concentration

travels at a faster rate than in the melted region (due to the smaller porosity of the domain)

and forms an advanced solutal front. The nature of the instabilities that develop on these

fronts are examined next.
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Effect of βC and βT

In Figure 6.2 the role of the thermal log mobility ratio (βT ) is examined. To isolate the

effects of the concentration gradient, the solutal log mobility ratio is set to βC = 0 and as a

result the solutal front is intrinsically stable. The adverse mobility ratio at the thermal front

forms melted fingers in the frozen region. The growth rate of these fingers depends on the

strength of the viscous forces, and as expected instabilities are stronger for larger values of

βT . It is worth noting that the solutal front remains stable for βT = 2 as the rate of growth

of melting fingers is not strong enough to affect this front. For βT = 4 however, the growth

rate of the thermal fingers increases such that the thermal instabilities reach the advancing

solutal front and affect its profile.

The effects of the melting process on the instabilities can be better understood when

the results for βT = 4 are compared with those of an analogue scenario with no melting

(see Figure 6.3a). The heat transfer coefficient and the melting potential of the fluid for

non melting scenarios have been chosen small enough (HT = 1e − 7 and Ste = 0.04) to

ensure that there are no changes in the medium due to melting. The flow structures are

substantially different in this case, with weaker less developed fingers at the thermal front and

virtually none at the solutal one. Moreover, the thermal front has moved further downstream

compared to the melting case. These different behaviors can be explained by the fact that

in the melting case, the change in the porosity and the ensuing heterogeneity add to the

instability of the thermal front and are the origin of the finger structures observed on the

solutal front. On the other hand when no heat is transferred to melt the frozen part, the

thermal front is able to proceed further downstream. Due to the weaker instability on the

thermal front and the homogeneous permeability in the non-melting case, the solutal front

is not affected by the thermal one and remains stable. The results of a counterpart scenario

with (βC , βT ) = (4, 0) in which the concentration gradient is driving the instability are
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Temperature Porosity Concentration

a) (βC , βT ) = (0, 2)

b) (βC , βT ) = (0, 4)

Figure 6.2: The effect of the thermal log mobility ratio (βT ) on development of instabilities;
Ste = 3.2, t = 250.

Temperature Concentration

a) (βC , βT ) = (0, 4)

b) (βC , βT ) = (4, 0)

Figure 6.3: The effect of βC and βT on instabilities of non-melting scenarios; HT = 1e − 7,
Ste = 0.04, φmin = 0.7, t = 250.

Temperature Porosity Concentration

(βC , βT ) = (4, 0)

Figure 6.4: The effect of the solutal log mobility ratio (βC) on development of instabilities;
Ste = 3.2, t = 250.
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depicted in Figure 6.4. As mentioned earlier, the concentration has two fronts in melting

scenarios both of which are susceptible to instability for βC > 0. At the melting region,

the instability of the solutal front develops in the direction of the flow with little or no

interactions between the fingers. Moreover, the solutal, thermal and porosity fronts bear

great resemblance, which as we shall see later, is a result of the close interactions between

them. Again the role of melting can be assessed by comparing the iso-profiles in Figure

6.4 with those of the analogue non-melting scenario shown in Figure 6.3b. Compared to the

concentration iso-profile in Figure 6.4 the concentration front in the non-melting scenario has

a faster advancement rate and the solutal fingers are more complex with closer interactions.

The fingers are however longer in the melting case. These differences can be attributed to

the fact that in the non-melting case, the instabilities at the thermal front develop only as a

result of those on the solutal one. In the melting case however, the instabilities at the solutal

front give rise to thermal front instabilities which in turn result in melting and changes in the

medium porosity. The induced heterogeneity in the form of channels guides and enhances

the growth of the instabilities at the solutal front and results in long non-interacting fingers.

By comparing the effects of the solutal log mobility ratio with those of the thermal

log mobility ratio, it can be concluded that the former plays a more important role in the

subsequent development of instabilities. This behavior turns out to be dependent on the

melting parameters and will be discussed in more details when examining the mechanisms

driving the instability and the effect of the melting parameters on these mechanisms.

Effect of HT

The heat transfer coefficient HT determines the share of melting over the distribution of heat

in its sensible form in the medium. A small HT implies that only a small portion of heat

is dedicated to melting and most of the heat is convected further downstream. A large HT

on the other hand results in most of the heat being used towards melting and therefore past
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Temperature Porosity Concentration

a) HT = 0.01

b) HT = 1

Figure 6.5: The effect of the heat transfer coefficient (HT ) on development of instabilities;
Ste = 1.2, t = 250.

the melting front, there is not enough sensible heat to raise the temperature of the fluid.

The described effect causes the thermal front to be more diffused into the frozen regions for

small HT and to have sharp gradients at the melting front for large HT .

The temperature, porosity, and concentration iso-profiles shown in Figure 6.5 illustrate

the effect of HT on the development of instabilities in the domain. The temperature and

porosity fronts are clearly less unstable for HT = 0.01 and only advancing waves are formed

on these fronts. The small HT that extends the melting region and reduces the concentration

and temperature gradients attenuates the instabilities at the melting front. Due to this

attenuation and the gap between this front and the advanced solutal front, the instabilities

on the latter arise solely as a result of viscous forces. For HT = 1 on the other hand, the sharp

gradients lead to the development and growth of well separated fingers on both temperature

and porosity fronts. The melted fingers reach the advanced solutal front and through the

induced heterogeneity, dictate and guide the instabilities on this front.

Effect of Ste

The next parameter to look at is the melting potential of the fluid (Ste). This parameter

defines the rate of melting for a given heat transfer coefficient. A small Ste results in a
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slow melting process which inhibits the thermal and melting fronts from advancing in the

frozen region. It also reduces the dilution of solvent concentration at the melting front. The

effects of Ste on the instabilities are illustrated in Figure 6.6, where the scenario of Figure

6.5b is examined for two different melting potential values as Ste = 0.2 and Ste = 20. A

smaller potential of the fluid to melt down the frozen region reduces the ability of the melted

fingers to grow. Therefore for Ste = 0.2 the melted fingers are smaller than the other two

compared scenarios. The extended gap between the melting and the advanced solutal fronts

results in the development of instabilities on the advanced solutal front independent of the

melted fingers. Although by increasing the melting potential the growth of fingers in the

frozen region is facilitated, the melted fingers in Figure 6.6b with Ste = 20 do not show any

significant progress compared to those in the Ste = 1.2 case. The reason lies again in the

effect of the melting parameters on the mechanisms of instabilities. These mechanisms are

the advancement of the melting fingers, viscosity gradient, and heterogeneity of the medium.

By increasing Ste, the rate of advancement of fingers in the frozen region is enhanced, but

the other two mechanisms show non-monotonic responses to changes of this parameter and

therefore can reduce the growth rate of the fingers. These mechanisms and the effect of the

melting parameters on them will be discussed further in a corresponding section. The faster

melting resulting from the larger Ste in Figure 6.6b reduces the gap between the melting

and the advanced solutal front such that the latter forms around the melted fingers and is

indistinguishable from the concentration front formed at the melting front.

Effect of φmin

The initial porosity of the medium in the frozen region is defined by φmin. A smaller φmin

results in a larger permeability variation between the frozen region and the melted zone and

a stronger heterogeneity in the medium. This parameter meanwhile defines the saturation of

the frozen material in the un-melted regions (Ss = 1−φmin) with a smaller φmin corresponding
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Temperature Porosity Concentration

a) Ste = 0.2

b) Ste = 20

Figure 6.6: The effect of the melting potential of the fluid (Ste) on development of instabil-
ities; t = 250.

to a larger saturation of frozen material to be melted. Figure 6.7 shows the concentration iso-

profiles for three scenarios with different values of initial porosity. Due to the small melting

potential of the fluid adopted in these scenarios (Ste = 0.2) and the well separated melting

and advanced solutal fronts, the concentration contours in this figure adequately reflect the

shapes of the melting fronts as well. Thus only the concentration profiles are presented.

A smaller porosity in the frozen region leads to a larger interstitial velocity ahead of

the melting front that increases the gap between the fronts as well as the instability on the

advanced solutal front. On the melting fronts, as illustrated in Figure 6.7, increasing the

initial porosity from 0.7 to 0.9 does not result in any significant changes in the lengths of

the melted fingers. However the widths of the fingers increase with increasing φmin. The

enhancement of the lateral growth of fingers in media with larger φmin can be attributed to

the smaller saturation of the frozen material that needs to be melted for the advancement

of the melting front. A similar effect is however not observed for the longitudinal growth of

instabilities. The reason again can be sought in the counteracting effects of the mechanisms

in favor and against the growth of fingers in media with larger initial porosity. While the

advancement of fingers in such media is facilitated by the reduction of the saturation of
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a) φmin = 0.7 b) φmin = 0.8 c) φmin = 0.9

Figure 6.7: The effect of the initial saturation of the frozen material (φmin) on development
of the instabilities; Ste = 0.2, t = 250.

the frozen material, the reduced heterogeneity attenuates the instabilities. The changes in

concentration and temperature gradients at the melting front as a result of the reduction of

φmin require a closer analysis that will be presented in the following section.

6.4.2 Mechanisms Affecting the Development and Growth of Instabilities

As mentioned previously, the development of the instability is closely connected to the ad-

vancement rate of the melting front (determining the growth rate of the melting fingers), the

viscosity gradient (defining the strength of the viscous forces), and finally the heterogeneity

of the medium. In order to explain the results reported earlier, the effect of melting parame-

ters on the strengthening or weakening of these mechanisms are examined. In unstable flows,

the growth rate of the melting fingers or the gradients of temperature and concentration at

the melting front vary from point to point and are affected by viscous instability and het-

erogeneity mechanisms. Therefore it is not possible to isolate the effect of the parameters on

each mechanism. Hence, except for the heterogeneity which can only be seen in two dimen-

sional models, the other two mechanisms will be analyzed next considering one-dimensional

stable cases to gain more insight into the physics of the flow.

Advancement Rate of the Melting Front

We will propose here a semi-analytical model for the rate of advancement of the melting

front in stable scenarios. To this end we will recognize that the heat injected in the domain

is equal to the increase in the sensible and latent heat of the medium. For better clarity,
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the formulation will be initially obtained using dimensional variables. The total energy

injected by time t is (ρfcpfLyUt(T1 − Tm)). To determine the increased heat content of

the domain, it will be assumed that the heat transfer coefficient is very large such that

the melting and thermal fronts have sharp gradients over a narrow melting region. Hence,

both temperature and porosity drop from T1 and φR to Tm and φmin at the same location

xφ(t) which is an estimate of the distance traveled by the melting front. As discussed in

Appendix A, this assumption is actually not restrictive and a proposed unification scaling

suggests that the prediction of this analysis is applicable to any process with any rate of

heat transfer. At any time t, the sensible energy of the fluid and the rock is increased by

(ρfcpfφmin+ρRcR(1−φR))Lyxφ(T1−Tm). The frozen material in the swept region is melted

and its temperature is increased to that of the injected fluid (T1). As a result its energy is

increased by (ρfcpf (T1 − Tm) + ρs∆hf )(φR − φmin)Lyxφ. The balance of heat implies that:

[
(ρfcpfφmin + ρRcR(1− φR)) (T1 − Tm) + (ρfcpf (T1 − Tm) + ρs∆hf )(φR − φmin)

]
xφ

= ρfcpfUt(T1 − Tm) (6.26)

Assuming a constant rate of advancement of the melting front,
dxφ
dt
≈ xφ

t
, the following

expression is derived from Equation 6.26 for the rate of advancement of the melting front in

dimensionless form:

dx∗φ
dt∗

=
λ

1 + (λ/Ste)(1− φ∗min)
(6.27)

It should be noted that for moderate Ste values, the assumption of constant rate of advance-

ment is reasonable and is confirmed from earlier results for stable scenarios [173]. Using this

equation, it can be easily shown that the rate of advancement increases monotonically with

λ, Ste and φmin and that it is bounded by an upper limit value λ corresponding to the rate

of advancement of the thermal front. This upper limit is reached at large enough values of

Ste or when the initial porosity of the frozen region is close to that of the rock. Here forth we
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Figure 6.8: Approximation of λ′ in stable scenarios; solid lines correspond to analytical
approximations and the scattered data points present the obtained values from non-linear
numerical simulations.

are going to call the advancement rate of the melting front described by Equation 6.27 as λ′.

The predictions of this model are compared to those obtained from the numerical solutions

for different values of Ste and φmin (Figure 6.8). It is clear that there is a very good agree-

ment between the model predictions and the numerical simulation results. As predicted,

beyond a critical value of the Stefan number (Stec ≈ 10 for the chosen parameters), the rate

of advancement levels off to the value of the thermal lag coefficient; λ = 0.8.

Viscosity Gradient at the Melting Front

The strengths of viscous forces driving the instability depend on the concentration and

temperature gradients as well as the corresponding log mobility ratios. In this part we will

examine how the melting parameters affect these gradients by looking at the stable cases;

βC = βT = 0. The semi-analytical model for the advancement rate of the melting front will

be used to determine the variation of the concentration at the melting front. For large HT ,

the concentration drops from 1 to α at the melting front and past the melting front it adopts

a convective diffusive profile described as [173]:

c̄φmin =
1

2
α× erfc

(
x− t/φmin
2
√
t/φmin

)
(6.28)
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The conservation of mass of the solvent leads to the following balance equation in dimen-

sional form:

((C1 − C2)φR − (Cdrop − C2)φmin)xφ + (Cdrop − C2)φminU
t

φmin/φR
= (C1 − C2)Ut (6.29)

Here Cdrop is the solvent concentration right after being diluted at the melting front and

α =
Cdrop−C2

C1−C2
. The first term on the left hand side corresponds to the increase in solvent

concentration in the melted region with the advancement of the melting front while the

second one represents the convection of solvent in the frozen region. The right hand side term

is simply the mass of the solvent injected by time t. The equation reduces in dimensionless

form to:

(1− αφmin)
dx∗φ
dt∗

+ α = 1 (6.30)

Thus α is obtained as:

α =
1− λ′

1− φminλ′
=

1 + λ
Ste

(1− φmin)− λ
1 + λ

Ste
(1− φmin)− λφmin

(6.31)

or

1− α =
λ′(1− φmin)

1− φminλ′
=

λ(1− φmin)

1 + λ
Ste

(1− φmin)− λφmin
(6.32)

According to Equation 6.32 the drop in concentration increases monotonically with Ste and

(1 − φmin). For large Ste, the drop in concentration becomes insensitive to variations of

the melting potential and levels off at a maximum of λ(1−φmin)
1−λφmin . For small Ste the drop in

concentration becomes independent of φmin as 1 − α approaches Ste. The predictions of

the model are compared with the maximum values of concentration gradient behind the

melting front obtained from the numerical simulations of stable flows for different values

of Ste and φmin (Figure 6.9a). Since the magnitude of the negative concentration gradient

defines the strength of this term, absolute values of ∇c are considered. It is clear that there
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Figure 6.9: The effect of Ste and φmin on the gradient magnitudes for stable scenarios;
(βC , βT ) = (0, 0), t = 250. a) Concentration gradient, b) Temperature gradient

is a very good agreement between the results of the numerical simulations (data points)

and the predictions of the model (solid lines). This indicates that the drop in concentration

at the melting front can be assumed to represent the concentration gradient at that point.

However given the assumption that the drop in concentration occurs at a certain point (xφ)

that was used in deriving the analytical model, the value of α cannot be strictly interpreted

in terms of ∇c. Still, the analytical model can be useful in explaining the effect of different

parameters on the concentration gradient at the melting front.

The other parameter that plays an important role in defining the viscosity distribution

is the temperature. An analytical model for ∇θ is developed based on an estimation of

the temperature distribution behind the melting front. According to Equation 6.20, in the

region with φ = 1 (behind the melting front) the temperature distribution obeys the following

equation:

∂θ

∂t
= Le∇2θ − λ∇θ (6.33)

Assuming that in melting scenarios the temperature profile only shifts forward with an

advancement rate of λ′, then the temperature and its gradients would be functions of ζ =

x− λ′t and thus Equation 6.33 can be recast as:

− ∂θ

∂ζ
λ′ = Le

∂2θ

∂ζ2
− λ∂θ

∂ζ
(6.34)
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If the maximum of the temperature gradient happens at point ζ∇ with the corresponding

temperature of θ∇ then an integration of Equation 6.34 from ζ = −λ′t (where θ = 1 and

∂θ
∂ζ

= 0) to ζ = ζ∇ results in:

∂θ

∂ζ

∣∣∣∣
ζ∇

=
(λ− λ′)

Le
(θ∇ − 1) (6.35)

The temperature θ∇ depends on the melting parameters and is obtained based on the results

of the numerical simulations for stable scenarios with different Ste and φmin values following

the correlation:

θ∇ = 0.76exp

(
−0.17

1− φmin
Ste

)
(6.36)

The maximum temperature gradient can be obtained by substituting θ∇ from Equation 6.36

into Equation 6.35. The derivation of Equation 6.35 is based on the assumption that the

thermal front keeps its profile and does not experience any diffusion. But as shown in [173]

for large Ste values the thermal front that encounters minimal resistance from the frozen

phase, has an error-function-like profile and thus the temperature gradient is more closely

described by:

∂θ

∂ζ
=

−1

2
√

Leπt
exp

[
− ζ2

4Let

]
(6.37)

The local minimum of this equation occurs at ζ = 0 and has a value of 1
2
√

Leπt
that is

independent of Ste or φmin but is a function of time. The two temperature gradient criteria

of Equations 6.35 and 6.37 form the solid and the dashed lines in Figure 6.9b. The magnitude

of temperature gradients obtained through nonlinear simulations are depicted as scattered

data points in Figure 6.9b as well. As illustrated in this figure the analytical estimations

match perfectly the numerical simulation results. These data points and the matched curves

show that ∇θ has an exponential decrease with increase of Ste
1−φmin that merges to a plateau of

1
2
√

Leπt
. The descending trend of ∇θ with Ste is due to the slower advancement of the melting
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(a) φ = 0.85 contours (b) Temperature contours

Figure 6.10: The contour lines of constant porosity φmin = 0.85 and the matching contours
of constant temperature for different Ste values; t = 250

front for smaller Ste and the build up of heat behind this front. The same reasoning applies

to larger saturation of frozen material that increases the temperature gradient behind the

melting front.

The diffused profile of the temperature for large Ste values may be captured for unstable

scenarios by comparing the temperature isoprofiles of Figures 6.5b and 6.6. Figure 6.10

illustrates the melting profiles of these scenarios and the corresponding temperature contours

that match these profiles. These graphs indicate that the melting front forms on a constant

temperature contour line (θφ) whose value decreases with increasing Ste. Therefore for larger

melting potential values, the melting front forms on an outer boundary of the temperature

profile and like in stable scenarios, this decreases the temperature gradients at the melting

front.

Medium Heterogeneity

The heterogeneity of the medium in this model is induced by the developed fingers. There-

fore, in addition to the range of variation of the permeability (defined by φmin), the structures

of the fingers that define the length scale of these variations are important in determining

the instability. Both the fact that the formation of fingers is the source of the heterogeneity,

and that the heterogeneity is one of the driving mechanisms for the development of fingers,
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make it difficult to analyze how changes in each parameter may affect this mechanism. In

general the pressure drop inside a finger has a direct relation with the finger’s length and

longer fingers are more favorable to fluid flow and the enhancement of the instability. On the

other hand and for a given flow rate through a finger, an increase in the width of the finger

reduces the local velocity and the contribution of heterogeneity to instability. Therefore

longer and thinner fingers enhance the instability due to heterogeneity while the opposite is

expected for wider or shorter ones. Moreover the number of long fingers affects the growth

rate of the fingers. An even transverse distribution of the instabilities results in a more even

distribution of the flow velocity in the medium. Therefore one expects that a single isolated

finger will induce a stronger heterogeneity in the medium than many fingers of the same size

developed close to each other.

The effect of Ste on the structure of the fingers can be inferred by comparing the porosity

contours in Figure 6.10a. Small fingers are observed for Ste = 0.2 while for Ste = 1.2 the

fingers are larger in length and width. The enhancement of the instability works towards

increasing the heterogeneity by increasing the length of the fingers. However for Ste = 20,

the stronger melting potential of the fluid prevents the persistence of thin regions of the

frozen phase in between the developed fingers and the base of the fingers gets melted. This

effect inhibits the growth of fingers’ length and thus reduces the heterogeneity. The effect of

Ste on the rate of growth of the melting fingers is better observed in Figure 6.11 where the

variation of the melting zone length (MZLφ) with Ste is depicted at t = 250. The melting

zone length is defined as the length of the region with average porosity of φmin < φave < 1.

It is observed that as the melting potential of the fluid is increased, MZLφ first increases and

then for Ste > 3.2 it decreases. Clearly heterogeneity is enhanced by increasing the melting

potential of the fluid for the range of 0.2 ≤ Ste ≤ 3.2. However further increase of Ste that

results in the reduction of the melting zone length (i.e. the length of the fingers) attenuates
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Figure 6.11: The effect of Ste and φmin on the Melting Zone Length (MZLφ); t = 250.

the effect of this mechanism. The effect of φmin on MZLφ is also illustrated in Figure 6.11

for φmin = 0.7 and φmin = 0.9. A small melting potential of the fluid results in a slower

advancement of the fingers. Thus a smaller saturation of the frozen material can help the

growth of instabilities for such scenarios. Therefore for Ste = 0.2, φmin = 0.9 leads to a

larger MZLφ than φmin = 0.7. However for moderate and large Ste, easier melting of the

base of the fingers due to the smaller saturation of the frozen material for φmin = 0.9 results

in smaller finger lengths. Despite its positive effect on the length of the fingers in the lower

range of Ste, increasing φmin reduces the variance of permeability and therefore it weakens

the heterogeneity regardless of the value of Ste.

Based on the previous discussions it is possible to explain some of the observed trends in

the 2D contours. For example when comparing the importance of the log mobility ratios in

Figures 6.2b and 6.4 it was noted that the solutal log mobility ratio has a stronger effect in

the destabilization of the front than the thermal log mobility ratio. Looking at Figure 6.9

it can be seen that for the parameter values in these scenarios (Ste = 3.2 and φmin = 0.7)

|∇c| is larger than |∇θ|, hence the stronger contribution from βC is not surprising. It can be

said that for Ste ≥ 3.2, the larger concentration gradient results in a stronger contribution

from the solutal log mobility ratio. For smaller Ste however, βT will have the leading role
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and will affect the instability more strongly.

Also in Figures 6.5b and 6.6, where the effects of Ste on the development of instabilities

were examined, a non-monotonic trend was observed . It is now clear that an initial increase

of Ste from 0.2 to 1.2 leads to a significant enhancement in the rate of melting and |∇c| and

the length of the fingers also show considerable increase. So despite the reduction of |∇θ|,

the fingers show faster development at the melting front. Increasing the melting potential

to Ste = 20 does not result in significant changes in λ′ or |∇c| and |∇θ|. Yet it decreases

MZLφ and thus reduces the contribution of heterogeneity and attenuates the instability.

Finally the negligible effects of φmin on the instability in Figure 6.7 is now better un-

derstood considering the small melting potential used in this figure (Ste = 0.2). With the

decrease of φmin while λ′ decreases significantly, the temperature gradient at the melting

front shows a relatively significant increase. These mechanisms and the reduced heterogene-

ity as a result of the increased φmin balance each other and lead to virtually constant lengths

of the melting fingers for different φmin. For larger values of Ste the effects of φmin on the

temperature gradient and λ′ wear off and the synergetic decrease of concentration gradient

and the heterogeneity which increasing φmin reduces the instability in media with smaller

saturation of the frozen material.

Although the qualitative analysis of the development of instabilities is beneficial in un-

derstanding the reasons behind the different observed trends, it does not provide an overall

image of the performance of the melting process. Hence in the following section a quantita-

tive study of the melt production for different scenarios and the effect of the instability on

the enhancement of the process are presented.
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6.4.3 Melting Trends in Unstable Scenarios

In this section the effects of the instabilities on the melt production compared with the

corresponding stable scenarios are analyzed. The difference between the porosity of the

medium and the initial porosity gives a measure of the amount of melt produced during the

displacement. The melt production is scaled with respect to the amount of frozen material

initially present in the domain to give the relative amount of melted material.

Melt% = 100×
∫ Pe

0
(φ− φt0)dx

Pe(1− φmin)
(6.38)

Effect of βC and βT for different Ste and HT

Figure 6.12a illustrates the effects of the solutal and thermal log mobility ratios on the

Melt% for Ste = 0.2 and 3.2. The corresponding stable scenarios are also presented for

comparison. For the larger value of the Stefan number, Ste = 3.2, the melting curves for

(βC , βT ) = (4, 0) and (0, 4) superpose and show significant increase in melting compared to

the stable case. For Ste = 0.2 however the instabilities are significantly attenuated and the

difference between the stable scenario and the unstable one is relatively small. In fact the

melting curve for (βC , βT ) = (4, 0) follows closely that of the corresponding stable scenario.

As discussed before the effect of the solutal log mobility ratio on the instabilities and thus

on the enhancement of melt production, is more pronounced at large Ste. By decreasing the

melting potential, the gradient of the concentration and thus the instability at the melting

front are attenuated, therefore decreasing the difference with the stable case.

For small heat transfer coefficients, the instabilities on the melting front are found to be

attenuated due to the reduction of the temperature gradient. In Figure 6.12b the effects

of the thermal instability (βC , βT ) = (0, 4) are illustrated for two different heat transfer

coefficients. For HT = 0.01 the slight appearance of instabilities on the thermal front results

in some increase in the relative melt production but the differences between the unstable
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Figure 6.12: The effects of βC and βT on the melt production for a) Ste = 0.2 and 3.2 and
HT = 1, and b) HT = 0.01 and 1 and Ste = 3.2.

and the stable cases are not significant. For the larger heat transfer coefficient HT = 1, the

increase in melting rate as a result of the developed instability is more significant. These

results are to be contrasted with those of the stable cases for which the smaller heat transfer

coefficient leads to slightly more melting than the larger one [173].

Effect of φmin and Ste

Figure 6.13a depicts the effects of φmin on the melt production for two values of the Stefan

number. For Ste = 0.2 the melting rate increases as φmin is increased. This trend is however

reversed for large Stefan number; Ste = 20. This result can be explained based on the

discussion in the previous section, where it was found that while a larger saturation of

frozen material attenuates the instability for small Ste, for large Ste, as the resistance of the

frozen region against the development of instabilities becomes weaker, it results in enhanced

development of fingers.

The effects of Ste on melt production are shown in Figure 6.13b for φmin = 0.7. As

discussed earlier, for large Ste all the instability mechanisms and even λ′ that defines the rate

of melting for stable scenarios become insensitive to variations of the the melting potential

of the fluid. So while increasing Ste tends to increase the Melt% in the lower ranges of Ste,
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Figure 6.13: The Effects of φmin and Ste on melt production a) φmin = 0.7 and 0.9, and
Ste = 0.2 and 20 , and b) φmin = 0.7 and Ste = 0.04− 100.

this effect becomes less important at large values of the melting potential.

The previous results show that the instability enhances the melting rate but the com-

parison between the melt production of different processes does not provide a measure of

the exact contribution of the instability to the increase of melt production. In the following

section the instability and its contribution to melt production are examined quantitatively.

6.4.4 Quantitative Study of Enhancement of Melting due to Instabilities

In order to determine the extent of the contribution of the instability to melting one should

first quantify the increase in melt and the instability. The increase in melt is quantified

using the Relative Melt Increase (RMI) as the scaled difference between the melt production

in an unstable scenario and that of the corresponding stable scenario:

RMI =
MeltUnstable −MeltStable

MeltStable
(6.39)

In Figure 6.14a the time trends of RMI are presented for different scenarios with φmin = 0.7

(solid lines) and φmin = 0.9 (dashed lines) and for Ste = 0.2− 20. The RMI does not show a

monotonic variation with the melting parameters Ste or φmin. For both examined values of

initial porosity, an increase in Ste up to Ste = 7.2 is accompanied by a strong enhancement
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Figure 6.14: Relative Increase of Melting (RMI) in unstable scenarios for different Ste values
and φmin = 0.7 (solid lines) and φmin = 0.9 (dashed lines) a) versus time, b) versus the
increase in relative contact area RCA−1.

of melt production due to instability. Further increase of the melting potential to Ste ≥ 20

however, puts an end to this trend. The cases with φmin = 0.7 show larger RMI than those

with φmin = 0.9 except for Ste = 0.2 where the trend is reversed. These non-monotonic

trends can be explained in terms of the flow instability if one can show that RMI is directly

correlated with the instability of the process. The instability of a displacement process can be

measured through different parameters such as MZLφ (representing the length of the fingers)

or the Relative Contact Area (RCA) defined as the length of a contour line representing the

front’s profile over the width of the domain. For a stable scenario RCA remains constant

equal to 1 throughout the process. For unstable scenarios a larger RCA corresponds to larger

fingers or more complexity of the front’s profile, and therefore RCA can be used as a measure

of the strength of the instability. In this work the RCA of the thermal front measured at

θ = 0.5 will be adopted to quantify the instability.

In Figure 6.14b the RMI is plotted versus RCA − 1 (i.e. the increase in RCA due to

the instability). Clearly the increase of the relative contact area correlates well with the

RMI. Yet the same level of instability (as measured by RCA) results in a larger RMI when

Ste or φmin are larger. For large Ste as shown in Figure 6.10 the melted region covers the
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tip of the thermal fingers. This behavior, which will be elaborated on shortly magnifies the

effect of instabilities on the melt production and results in larger RMI for faster melting

scenarios. Considering the fact that for small melting potential values a medium with larger

φmin affords faster melting of the base and lateral growth of the melting fingers, the effect of

larger φmin on the increase of the RMI can be expected. Hence, the sharper the temperature

gradient at the melting front and the larger the saturation of the frozen material in the

medium, the more closely the melting front moves with the thermal front and the smaller is

the contribution of instability (however strong it may be) to the enhancement of melting.

The effect of the diffused temperature profile on the increase of the melted area is illus-

trated in Figure 6.15. Here it is assumed that two scenarios with different melting potentials

have matching θ = 0.5 contour lines (the solid line). For a small Ste scenario, the melting

front forms on the same contour line as (or very close to) the θφ ≈ 0.5 line. However for

larger Ste when the temperature is allowed to diffuse in the medium the melting front forms

on an outer temperature contour line (the dashed line) with θφ = 1e− 3. The difference be-

tween the swept areas by the two lines shows the difference in the contribution of instability

to the melt production for the two different Ste values.

In fact what makes the unstable cases more efficient in terms of melting compared to

the stable ones is the enhanced diffusion of heat in the medium due to instability and the

formation of the melting front ahead of the thermal fingers. If for an unstable scenario the

melting and the thermal fronts have sharp gradients and form the same profiles, then the area

swept by these fronts (Aφ) times the changes in the sensible and the latent heat is equal to

the heat injected into the medium. Since in both unstable and stable scenarios the injected

heat is the same, the swept area for the unstable scenario is equal to the stable one. Based

on this, for the same profile of the thermal front (the same level of instability), in order to

enhance the melt production one needs to shift the melting front on the temperature contour
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Figure 6.15: Temperature contour lines θφ = 0.5 and θφ = 1e − 3 representing the melting
front’s profiles for different scenarios with small and large melting potentials.

lines. As mentioned earlier (and shown in Figure 6.10) such a shift is inversely proportional

to the increase in Ste. Therefore for larger Ste the shift becomes less sensitive to the fluid’s

melting potential and the RMI curves for different Ste superpose.

6.4.5 Effect of Le, Pe, and λ on Melting

The main focus of this study has been on the parameters that distinguish the melting pro-

cesses from the non-melting ones. But there are other parameters involved in the model such

as Le, λ, or Pe that can affect the instabilities and the melt production. The roles of these

parameters are briefly discussed in this last section of results.

Effect of Le A larger Le corresponds to a faster diffusion rate of heat in the fluid-rock

phase and consequently a smaller temperature gradient at the melting front. Thus a larger Le

results in a more even distribution of melting in the domain and attenuates the instability.

Therefore, even though increasing Le for stable scenarios enhances the melting rate, for

unstable scenarios the attenuation of instability results in reduction of melt production.

Effect of Pe The ratio of the convection rate over the diffusion rate is reflected in the

model by Pe, with larger Pe corresponding to weaker mass and heat diffusion in the medium.

On the other hand, according to the definition of the heat transfer coefficient, HT ∝ 1
Pe2

,
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larger Pe values result in more diffused temperature profiles. As shown in the appendix, the

diffusion of the melting front scales like DC/HT ∝ Pe. hence by increasing Pe, the overall

result would be a stronger diffusion of the melting front and an attenuation of instabilities

at this front. In the range of the Pe values we studied (500 ≤ Pe ≤ 2000) which corresponds

to varying HT between 0.25 and 4, variation of Pe was not found to result in any significant

changes in the melt production.

Effect of λ In non-melting media, the thermal lag coefficient defines the rate of advance-

ment of the thermal front relative to that of the solutal one. In melting media, according to

Equations 6.27 and 6.32, increasing λ increases the advancement rate of the melting front

and the concentration gradient behind this front. Yet these mechanisms are less sensitive to

variations of λ in scenarios with small Ste. The results of the numerical simulations show

that the effect of λ on ∇θ is negligible. So overall, increasing λ enhances the instability and

the rate of melting.

6.5 Summary and Conclusion

The effects of hydrodynamic instabilities on melting in under-saturated porous media has

been investigated. The model describing the non-isothermal displacement processes, consid-

ers a transient thermal equilibrium between the fluid-rock and the melting phases and thus

allows the diffusion of the thermal front in the frozen region. In the first part of this study a

qualitative observation of the effects of the melting parameters on the development of fingers

has been presented based on the results of nonlinear simulations. In the second part, the

mechanisms enhancing or attenuating the instabilities namely the advancement rate of the

melting front, the viscosity gradient, and the heterogeneity of the medium are discussed. An-

alytical descriptions for the first two mechanisms are obtained and the observed phenomena
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in the first part are explained accordingly. Finally the effect of different parameters on the

melting trends have been discussed in the last part of the study and the correlation between

the instability and the increase in the melting rate is examined.

It was found that in general the unstable scenarios have larger melting rates than the

corresponding stable one and a stronger instability, as quantified by the relative contact

area (RCA) of the thermal front leads to more melting. In regards to the effect of different

parameters on the instability and consequently the melting, the instability of the melting

front is enhanced by an increase of the thermal and solutal log mobility ratios. In the lower

range of Ste values, the contribution of the solutal log mobility ratio is less significant while

the thermal log mobility ratio shows a stronger effect. A smaller heat transfer coefficient

attenuates the instability by decreasing the temperature and concentration gradients. The

effects of Ste and φmin on melting have been shown to be non-monotonic. In the lower range

of Ste, increasing the melting potential increases the instability and has positive influence on

enhancement of melting. Yet further increase of Ste attenuates the contribution of hetero-

geneity by melting the base of the fingers. Moreover, for small Ste, a larger saturation of the

frozen material attenuates the instability while for larger Ste it enhances the heterogeneity

and thus results in faster developing fingers.

Based on the results of this study, the contribution of the instabilities to the melting

process is limited for smaller Ste values as the sharp thermal profile does not allow for any

increase in the swept area by the melting front. This behavior is improved by decreasing the

initial saturation of the frozen material in the medium.
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Chapter 7

Summary and Conclusion

This dissertation consists of four manuscripts investigating the flow instabilities in porous

media with and without the effect of heterogeneity. In order to gain the prerequisite knowl-

edge for modeling non-isothermal displacements in melting media where heterogeneity grows

with the advancement of the instabilities and melting (the problem defined in Chapters 6

and 5) non-isothermal displacements in homogeneous media and isothermal displacements

in heterogeneous media have been thoroughly investigated. The original numerical simula-

tions of these problems have been based on a pseudo-spectral method that transforms the

nonlinear equations in space and results in initial value problems with ordinary differential

equations. The spectral method could not however be used for the melting media as the

sharp gradients at the melting front required non-uniform grid distributions which did not

comply with transformation algorithms. Therefore, in the melting models a second order

non-uniform finite difference scheme has been used to obtain spatial derivatives. The second

order Adams-Bashforth - Adams-Moulton predictor-corrector time stepping algorithm mod-

ified with a correction-evaluation sequence has been employed in all of the models to secure

the stability and accuracy of the solutions.

The stability of non-isothermal flows has been examined in Chapter 3 and the simulation

results in the form of 2D contours have been analyzed to recognize the physical behavior

of the flow at different conditions. Different combinations of adverse and favorable mobility

ratios on the thermal and the solutal fronts have been examined for different thermal lag
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coefficients (λ) and diffusion rates of heat in the medium. In each scenario one of the thermal

or the solutal fronts had a favorable mobility ratio while the other one was viscously unstable.

The results showed that the rate of heat exchange with the medium that defined the thermal

lag coefficient is an important parameter to indicate the stability of the process. The average

concentration and temperature curves have been used to study the interactions between the

thermal and fluid fronts. For small thermal lag coefficients and small diffusion rates the gap

between the two fronts did not allow for efficient interactions between them and the fluid

front determined the stability conditions. For the scenarios where the instability grew on the

thermal front, the development of instability showed a non-monotonic trend with variations

of the thermal lag coefficient. Larger heat losses to the porous medium resulted in slower

advancement rates of the thermal front and smaller effective Peclet numbers that reduced

the instability on this front. So increasing λ (reducing the heat loss) resulted in enhancement

of the instability on the thermal front. Yet because the solutal front had a favorable mobility

ratio, it resisted the development of instabilities. So a large λ that led to a small gap and

improved interaction between the two fronts, inhibited the thermal fingers to develop into

the fluid front and thus attenuated the instability on the thermal front. For the scenario

with favorable thermal mobility ratio and unfavorable solutal mobility ratio the instability

of the process was mainly defined by the fluid front and the thermal front became less and

less influential as λ was decreased. A larger diffusion rate of heat was shown to weaken the

role of the thermal front in stabilizing or destabilizing the fluid front. Also the sensitivity

of stability to λ decreased as Le was increased. As a quantitative measure of instability,

breakthrough time of the mixing zone at the production boundary and the thermal and

solutal sweep efficiency have been determined for different scenarios. The conclusions from

these quantitative analyses and those of the 2D contours were in agreement. New scenarios

with both fronts having unfavorable mobility ratios were examined quantitatively. The
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efficiency analyses revealed that an unstable thermal front enhanced the instability at the

solutal front and lowered the sweep efficiency and breakthrough time of the process. This

effect was weakened by higher diffusion rate of heat and faster heat exchange with the porous

medium.

Chapter 4 has been dedicated to the study of the coupling between viscous fingering and

heterogeneity induced instability. Qualitative analysis of concentration contours as well as

quantitative characterizations through the mixing zone length (MZL) and the breakthrough

time (BT) have been performed for a wide range of flow parameters and heterogeneity

scales. The qualitative studies showed that reducing the width of the high permeable layers

(by increasing the number of the layers or increasing the aspect ratio of the medium) results

in a non-monotonic trend of the growth of instabilities. At first, by reducing the width

of the layers the growth rate of fingers increased and reached a maximum value that then

decreased by further reduction of the layers’ widths. This trend, that was attributed to a

resonance between the length scale of heterogeneity and the intrinsic length scale of viscous

instabilities in the previous works [69, 72, 73] has been shown in this study to be time

dependent and a result of each case going through a different flow regime at the time of

interest. Further quantitative analyses revealed that in essence, all the examined scenarios

went through similar flow regimes, namely an initial diffusive regime followed by a channeling

regime then lateral dispersion and finally viscous fingering, though not necessarily at the same

extent and with the same intensity. In fact in media with very small heterogeneity layers or in

scenarios with high diffusion rates, the flow regime dominated by heterogeneity was bypassed

to viscous fingering. These flow regimes that had been recognized in previous studies [67] have

been characterized in this study by scaling time and MZL for different combinations of the

mobility ratios and variances of permeability distribution. Such characterization of the flow

regimes helped explain the dominance of viscous fingering or channeling regimes reported
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in earlier studies for different flow conditions and heterogeneous media. Furthermore, by

finding the critical effective Péclet number (the scaling factor) this scaling allowed identifying

the scenarios in which heterogeneity could be neglected and the flow could be treated as

homogeneous. Interestingly, for very small effective Péclet values, the qualitative behavior

and structure of the flows were virtually identical to those of the homogeneous case. These

results and scaling obtained in the case of diffusive flows, were found to be also valid when

an anisotropic velocity-dependent dispersion was considered. The effects of the mobility

ratio and variance of permeability were accounted for in the unification factor and allowed

to superpose the MZL of any flow in layered heterogeneous media on a master curve that

characterized the flow regimes up to the start of viscous fingering. In the quantitative studies

the scaling was shown to efficiently describe the variations of breakthrough time and sweep

efficiency of different processes. Two optimal values of the effective Péclet number that led

to a maximum and a minimum value of break through time were determined. In Appendix

A the application of the proposed scaling in industry has been illustrated by looking at

different examples of industrial scenarios. By scaling the location of the front’s end point

(EP) and MZL in the lab experiment the optimum flow conditions were obtained by choosing

the breakthrough time in the lateral dispersion regime. Back scaling the EP position to field

dimensions could be used to find the optimum injection velocity or well spacing, depending

on the fixed parameters.

In Chapter 5, a two dimensional model for non-isothermal displacements through melting

porous media has been developed. The fundamentals of melting phenomenon in under-

saturated porous media for viscously stable scenarios have been analyzed. The effects of

the melting parameters (i.e. the melting potential of the fluid, the heat transfer coefficient,

and the saturation of the frozen material) on the profiles of the involved variables including

the medium’s porosity, and fluid’s temperature and concentration have been investigated.
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The heat transfer coefficient was observed to define the extent of heat penetration into

the frozen region with smaller HT resulting in more extended thermal and melting fronts.

In the higher range of HT values, it was found that beyond a certain value, large heat

transfer coefficients did not result in significant changes in the process, and the temperature,

porosity, and concentration profiles were those of instantaneous thermal equilibrium (ITE ).

This conclusion had a significant influence on relaxing the numerical stiffness of the problem

and also has important practical implications that led to the unification scheme presented

in Appendix B. The melting potential of the fluid was shown to define the rate of melting

and to have a significant role in defining the location of the melting front. While for small

Ste values the thermal front was stuck behind the melting front, for very large Ste, the

advancement of the thermal front was no longer inhibited by melting and rather limited

by the heat’s diffusion and convection in the medium. A larger saturation of the frozen

phase in the medium was shown to result in a slower advancement of the melting front if

the melting potential of the fluid was small. For larger melting potential values, the effect

of this parameter was observed to be negligible. A quantitative analysis of different melting

scenarios using the cumulative melt production were essential in finding the insensitivity of

the melting process to the heat transfer coefficient for large values of this parameter. The

melt production curves corresponding to the ITE conditions revealed a linear trend with

time. So the melting rate was assigned as a characteristic of each melting scenario for large

HT values and its variations with respect to the melting parameters were examined. Further

analysis of the stable scenarios discussed in Chapter 6 led to analytical description of the

melting rate as a function of the melting parameters and a perfect agreement was found

between the analytical results and the rates obtained from numerical simulations. Moreover,

it has been shown in Appendix B that regardless of the value of the heat transfer coefficient,

the melting rate of all melting scenarios asymptotically merges to the analytically derived
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rate. The short term simulations of Chapter 5, however showed that at each time step

there was a heat transfer coefficient smaller than the critical one that resulted in more melt

production than the other scenarios. The effects of diffusion rate of heat in the medium (Le)

has also been investigated and a larger Le is shown to enhance the melting process. Yet based

on the studies on the effect of HT and the asymptotic trends of melting for scenarios with

larger Le it can be premised that a larger diffusion rate has the same effect as a smaller heat

transfer coefficient and the melting rate of such scenarios merge to the analytical solution as

well. The observed insignificant effect of large Le for small Ste values also agrees with this

premise.

In the final section of Chapter 5 the effects of heterogeneity on the melting trends have

been examined by considering frozen blocks of different shapes in the porous medium. In

addition to the internal heat transfer mechanism (similar to the one acting in the previously

discussed homogeneous scenarios), outer-boundary convection between the bypassing fluid

and the boundaries of the frozen region promoted melting. The new melting mechanism was

observed to be enhanced by a reduction in the initial porosity of the frozen block and an

increase in its width as both increased the velocity around the frozen block. An estimate

of the contribution of each melting mechanism was obtained by premising the internal heat

transfer to be proportional to the heat flux through the frozen block. Finally the melting

trend of different frozen blocks were unified by scaling the melt production based on the

initial saturation of the frozen material and the shape factor (similar to the one used for

drag force calculation) of the block.

The effects of hydrodynamic instabilities on melting in under-saturated porous media

have been investigated in Chapter 6. The qualitative observation of the effects of the melt-

ing parameters on the instabilities have been followed by introduction of the mechanisms

enhancing or attenuating the instabilities. Due to the complex interactions between different
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instability mechanisms (namely viscous fingering and heterogeneity induced channeling) and

the feedback from the melting process, general conclusions could not be derived by studying

individual scenarios. Thus characterization of the mechanisms that contributed to viscous

fingering or channeling was found to be of utmost importance. Analytical description of

these mechanisms, namely the advancement rate of the melting front, the viscosity gradient,

and the heterogeneity of the medium, allowed the identification of the role of the melting

parameters in enhancing or attenuating the instability. According to these analyses, the un-

stable scenarios had larger melting rates than the corresponding stable ones and a stronger

instability led to more melting. Thus any parameter that promoted an enhancement of in-

stability (e.g. larger log mobility ratios) increased the melting rate although the extent of

the contribution of these parameters varied in different scenarios. For example the solutal

log mobility ratio only affected the instability if the assigned Ste was large enough while

the opposite was true for the thermal log mobility ratio. The effects of the melting pa-

rameters on instability was in general non-monotonic except for the heat transfer coefficient

that attenuated the instability by producing smaller gradients at the melting front. A larger

melting potential in the lower range of Ste, increased the instability but a further increase

of Ste resulted in weakening of the contribution of heterogeneity. A larger saturation of the

frozen material attenuated the instability in scenarios with limited melting potential while

for larger Ste the heterogeneity was enhanced by an increase of the saturation and faster

developing fingers were observed. Overall, the contribution of instabilities to the enhance-

ment of melting was found to depend on the increase in the melted area as a result of the

development of fingers. Therefore for smaller Ste values corresponding to the temperature

and porosity profiles forming close to each other, insignificant improvement in melting was

observed while the same level of instability resulted in improved melting for larger melting

potentials or smaller saturations of frozen material.
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In the analyses conducted in this research work, for non-isothermal displacements, it has

been assumed that the medium is homogeneous and the heterogeneity is studied for isother-

mal displacements. The coupling between these two phenomena is not as simple as including

the heat conservation equation in the heterogeneous model. The reason is that the thermal

properties of the medium are highly dependent on the porosity and the correlation between

variations of permeability and porosity in the medium should be considered. Thus many of

the parameters deemed constant in the equations (such as heat diffusion rate and thermal

lag coefficient) are to be redefined. This would be an interesting subject for further investiga-

tion due to its extensive application in different displacement processes. Another limitation

of this work is the model of permeability employed to study the effect of heterogeneity on

instabilities. Although the simple model turned out to simplify the characterization of the

flow regimes and the development of a unification scheme, its application in real field is

limited. Finding the parameters, resembling the ones defined for the layered heterogeneity,

for random permeability distributions would extend the application of the proposed scaling

to industrial displacements. Also the similarity between the flow patterns in other forms of

hydrodynamic instability, such as gravity driven instability or immiscible viscous fingering,

coupled with heterogeneity of the medium, suggests that the present scaling approach can be

also adopted to characterize the flow behavior in these phenomena. Therefore a systematic

study could facilitate unification of these types of flow instabilities as well. The flow insta-

bility in melting media with all the employed simplifying assumptions is a stiff numerical

problem. Yet inclusion of some other mechanisms such as gravity forces and the change in

density during melting could expand the applicability of the results to more natural and

industrial applications. The problem as described in this work can also benefit from more

investigation towards analytical solution of the equations for 1D stable scenarios especially

for moderate melting potential cases. Although parts of this research work have been con-
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ducted on the extensively studied topics such as non-isothermal displacements or flow in

heterogeneous media, its contributions to the knowledge about these phenomena are novel

and recognized by well ranked scientific journals. To the author’s knowledge there has been

no previous study that looked at the dynamic heterogeneity discussed in this dissertation

and the model, the numerical simulations and the analytical solutions have been originally

developed by the author.
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Appendix A

Improvement of Sweep Efficiency of Miscible

Displacement Processes in Heterogeneous Porous

Media

In this appendix the application of the proposed scheme in Chapter 4 is discussed for

optimization of miscible displacements in heterogeneous porous media through studying five

different miscible displacement scenarios defined in Table A.1 in dimensional form. In the first

four cases the injection velocity, diffusion rate and well spacing parameters are changed but all

the displacements happen in a medium with layered heterogeneity of width 25.6 m. The last

scenario resembles the conditions for a lab experiment and shows how experimental results

can be applied to field scale projects. For measurement of the success of the displacement

scenarios their sweep efficiencies are plotted against time and the optimum flow conditions

are sought based on these graphs. For comparing different scenarios the position of the tip

of the front (EP) is used in addition to the previously defined mixing zone length for its

convenience of measurement and its direct relation with the distance between the injection

and production wells at breakthrough time. The same scaling scheme used for generalization

of MZL graphs can be applied for scaling the position of the tip of the mixing zone (xEP ) in

time.

In the first three cases defined in Table A.1, the only varying parameter is the injection

velocity which has been increased from 5e−6 m/s ≡ 0.43m/day to 20e−6 m/s ≡ 1.73m/day.
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The previous definition of the characteristic time and length in dimensional form (tc = w2/D

and xc = Uw2/(Dφ)) which has been used for scaling implies that the injection velocity

does not affect the transition time between the channeling and lateral dispersion regimes in

dimensional form. Dimensional plots of mixing zone length, endpoint position and sweep

efficiency of these three scenarios plotted versus time in Figure A.1 agree with this conclusion.

Increase of injection velocity from cases 1 to 3 results in faster growth of instabilities in each

regime and increases the advance rate of the EP position. The breakthrough time values for

each of the injection velocities for a fixed spacing between the injection and the production

wells (l = 550 m) are given in Table 1. The fact that higher injection rate results in earlier

breakthrough of the solvent, if not trivial, is expected but it does not mean that a lower

injection rate necessarily results in a higher efficiency of the process. In fact the calculated

values of the sweep efficiency of these processes show a better performance for case 2 with

the injection rate of U = 10e− 6 m/s than the other two scenarios. The sweep efficiency of

a displacement process is significantly affected by the instabilities and therefore is correlated

with the flow regime in heterogeneous media. Due to the growth of fingers in the channeling

regime the flow has lower sweep efficiency in this regime and the efficiency improves as lateral

dispersion develops. By the start of viscous fingering the sweep efficiency drops again. Figure

A.1c shows the variations of the sweep efficiency of the discussed scenarios with time and the

breakthrough time of each of the processes are marked on them as well as on the MZL and

EP position curves in Figures A.1 a and b. It is apparent that because the breakthrough of

case 1 with U = 5e− 6 m/s occurs during the viscous fingering period, its efficiency is lower

than the other two cases whose breakthrough times are during the lateral dispersion period.

So, slower injection of the solvent in this case reduces both the rate of production and the

recovery.

In what follows we discuss how the scaling scheme proposed in this chapter helps to find
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(a) (b)

Figure A.1: Quantitative description of the displacement front behavior through analysis of
time variation of a) MZL, b) EP position, c) Sweep Efficiency; breakthrough of each case is
marked as a solid circle on its curve

the optimum injection velocity or in general the optimum conditions that would result in

higher sweep efficiencies while maintaining high production rates.

As mentioned before the data used to plot the curves in Figures A.1a and b can be scaled

using the proposed dimensional scaling and the result would be a unified curve that can be

scaled back to the dimensional curve based on the parameter values of use. Figure A.2 shows

that scaled graphs. To examine the application of scaling for various diffusion coefficients

and widths of the layers cases 4 and 5 are also presented in these figures. Case 4 has a higher

diffusion rate of 1e− 5 m2/s compared to that of the previous three cases (5e− 6 m2/s) but

otherwise is similar to case 3. Case 5 has smaller dimensions which could correspond to an

experimental setup. The width of the layers in this case is 2.56 cm and the diffusion rate

and injection velocity are larger than the ones in cases 1 to 3. Despite the vast difference

in size between the different scenarios, the scaling of MZL and EP position matches all the

scenarios together. It is also interesting to note that cases 2 and 4 have the same w2U/DC

which means that the fronts in these two cases look similar at the same position. This

explains why they show the same sweep efficiency at the breakthrough time while reaching

it at different times as case 4 has an injection velocity double that of case 2. These unified

curves can be obtained from test results or experimental data of different sizes and can be

scaled back to the units of interest for any scenario as long as the mobility ratio is kept
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the same. In this practical approach the variance of permeability has been kept constant

and the generalization is performed based on Equation 4.14 but according to our previous

discussions the effect of this parameter can be included in the scaling as well by using the

proper scaling. Another limitation is that since the dynamics of the flow in viscous fingering

regime is dominated by advection rather than diffusion, unification of the curves is only valid

up to the start of viscous fingering in the process. So it is not possible to predict the time

at which viscous fingering starts. Breakthrough time can be calculated from the generalized

curves by setting ˜xEP = l/(w2U/DC) and adjusting the parameters that could be changed

like injection rate or the distance between the production and injection wells such that the

breakthrough happens in lateral dispersion regime. Since the scaling of different scenarios in

time synchronizes their flow regimes, plotting the sweep efficiency curves of these scenarios

with respect to the scaled time makes them to fall together as the flows go through the

channeling regime and rise again as the flows go through the lateral dispersion regime. Such

curves are useful for a direct determination of the optimum injection rate or well spacing

for a displacement process design based on the highest sweep efficiency. For example if only

production data of case 5 are available through lab experiments and the objective is to find

optimum well spacing for the scenario defined as case 1. The sweep efficiency of this scenario

versus scaled time (as in Figure A.2c) shows that if breakthrough happens between scaled

times of 0.2 and 0.5 then the process will have higher sweep efficiency. The scaled time

values on scaled EP plot in Figure A.2b refer to ˜xEP of 0.3 to 0.6 which can be scaled back

to dimensional values through l = ˜xEP × (25.62 × 5e− 6/5e− 6) and give the optimum well

spacing of 100 to 450 meters with the corresponding breakthrough time values of 300 to 750

days. These predictions agree well with the plots corresponding to case 1 in Figure A.2.

The optimum well spacing values for other scenarios are calculated similarly and are given

in Table A.1. The same procedure can be employed for optimization of the injection velocity
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(a) (b)

Figure A.2: Unified curves after scaling the length and time using the diffusive scaling for
a) MZL, b) EP position and c) sweep efficiency with respect to scaled time.

for a fixed well spacing.

Table A.1: Flow conditions for the described displacement scenarios and the corresponding
breakthrough time, weep efficiency at breakthrough and optimum well spacing for each
scenario.

Case U (m/s) w (m) DC (m2/s) SE at BT tBT (Days) lopt (m)

1 5e-6 25.6 5e-6 0.897 1005.1 65 to 450
2 10e-6 25.6 5e-6 0.976 508.0 120 to 650
3 20e-6 25.6 5e-6 0.969 219.7 250 to 1100
4 20e-6 25.6 1e-5 0.976 253.99 120 to 650
5 5e-3 0.0256 1e-6 - - 0.25 to 1.65
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Appendix B

Generalization of the Melting Curves for Different HT

A slow heat transfer between the fluid and the frozen material allows the heat to be

spent on melting more gradually and results in the melting region to extend more along

the flow direction. Therefore the temperature and porosity fronts will have more diffused

profiles for smaller HT . So the effect of smaller HT on the melting process translates into a

faster diffusion of heat in the domain. Considering this premise, to generalize the analysis of

the effect of HT we revisit the original equations and re-formulate the dimensionless groups

where DC is scaled with respect to HT :

(x∗, y∗) =
x, y
DC
HT

φR
U

t∗ =
t

DC
HT

φ2R
U2

p∗ =
pκR

φRµ1
DC
HT

µ∗ =
µ

µ1

κ∗ =
κ

κR
(B.1)

The resulting dimensionless equations are:

∇.(φ~v) = 0 (B.2)

∇p = −µ
κ
φ~v (B.3)

∂(φC)

∂t
= −φ~v.∇C +HT∇.(φ∇C) (B.4)

∂θ

∂t
=

1

(1− λ(1− φ))
[HTLe∇. ((1− (1− φ)krel)∇θ)− λφ~v∇.θ − (1− φ)2/3θ] (B.5)

∂φ

∂t
=

1

1 + Steθ

Ste

λ
(1− φ)2/3θ (B.6)

With this scaling, the dimensionless equation for melting is independent of HT and the

heat transfer coefficient appears only in the diffusion terms in the concentration and heat

equations. Hence the melting rate and the amount of heat devoted to melting do not depend
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Figure B.1: Melt % in the new dimensionless system scaling the diffusion rate with respect
to HT .

on HT . Figure B.1 shows the cumulative melt curves for stable scenarios with different

values of HT based on the new dimensionless groups. The melting curves for different HT

correspond to different parts of a unified curve and indicate that different heat transfer

coefficients result in the same melting trends only at different time scales.
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